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Abstract

The expansion of shock waves have been studied in mediums with di¤erent opacities and heat

capacities, varied in systematic ways by mixing xenon with nitrogen keeping the mass density

constant. An initial shock is generated through the brief (5 ns) deposition of laser energy (5 J) on

the tip of a pin surrounded by the xenon-nitrogen mixture. The initial shock is spherical, radiative,

with a high Mach number, and it sends a supersonic radiatively driven heat wave far ahead of itself.

The heat wave rapidly slows to a transonic regime and when its Mach number drops to � 2 with

respect to the downstream plasma, the heat wave becomes of the ablative type, driving a second

shock ahead of itself to satisfy mass and momentum conservation in the heat wave reference frame.

The details of this sequence of events depend, among other things, on the opacity and heat capacity

of the surrounding medium. Second shock formation is observed over the entire range from 100%

Xe mass fraction to 100% N2. The formation radius of the second shock as a function of Xe mass

fraction is consistent with an analytical estimate.
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I. INTRODUCTION

We previously reported on the experimental discovery of secondary shock formation ahead

of strongly radiative blast waves in Xe [1, 2]. The process can be summarized as follows (c.f.

Fig. 1): an expanding spherical shock (which we will refer to as s1) is initially fast enough to

radiate very strongly, with an inverse Boltzmann number Bo�1 = �T 4=vs�0cvT � 50 (where
T is the shock temperature, vs is the shock speed, and �0 is the density of the ambient gas).

The radiation mean free path in the cold ambient gas ahead of s1 is relatively short, resulting

over time in the formation of a supersonic, radiative heat wave (rhw), which propagates

in advance of s1. As s1 continually slows down, it radiates less and less, and the radiated

power soon drops below the rate at which s1 sweeps up energy from gas heated by rhw, i.e.,

the energy loss rate becomes negative. At this time, most of the energy that was originally

in s1 has been radiated to rhw, and rwh is far ahead of s1. However, the velocity of rhw

has also been diminishing rapidly because of expansion and a rapidly weakening driving

source. Eventually rhw becomes transonic and gives birth to a second shock wave (s2).

rhw then falls behind s2, which itself is too slow to be radiative. s1 continues to weaken as

it propagates in the downstream material of s2 and soon dissipates. After s2 has roughly

doubled its radius, it is no longer in�uenced by the details of how it was formed, and the

shock trajectory closely assumes that of a self-similar Sedov-Taylor blast wave [4�7].

The motivation behind our experiments (and behind many other experiments in labora-

tories around the world [8�15]) is an interest in astrophysical shocks which have high Mach

numbers and which may be radiative [16], e.g., shocks originating in supernova (sn) explo-

sions [9, 17�20]. The nature of these shocks is important to understand as the shocks mix up

interstellar matter and thus a¤ect mass-loading, stellar formation [21�23], and the history

of the Milky Way and other galaxies. Although the motivation for our experiments was an

interest in astrophysical shocks, we should point out that the character of these laboratory

shocks may be di¤erent from any of astrophysical importance, and that secondary shock

formation has not been observed or postulated in astrophysical shocks to date.
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II. BACKGROUND

The radiative nature of a shock, coupled with the optical opacity and heat capacity of

its surroundings, largely determines the evolution of the shock and its rate of expansion.

The energy loss rate can be quanti�ed (in units of how much energy the expanding shock

sweeps up) by the dimensionless number [3, 7] " = � (dE=dt) (2��0)�1 r�2s (drs=dt)
�3, where

E is the total energy content and rs the shock radius. In a strongly radiative case, in which

radiation escapes to in�nity, the incoming kinetic energy swept up by a shock is entirely

radiated away (" ! 1) and the shocked material collapses to a thin shell directly behind

the shock. For an adiabatic case (" = 0) once the shock has swept up more mass than

what was initially present, the shock could be regarded as without characteristic length or

time scales, and one would expect the well-known self-similar motion of a Sedov-Taylor blast

wave [4�7], rs / t�, where the exponent � = 2=5. In a case where radiation removes energy
from the shock in an optically thin environment, analytical and numerical studies predict a

slower shock expansion, such as � = 2=7 (the "pressure-driven snowplow"), � = 1=4 (the

"momentum-driven snowplow"; the shock is simply coasting) [16, 24], and 2=7 < � < 2=5

(the thermal energy of the shocked gas is not completely radiated away) [3, 7].

In a case where the environment is not optically thin, radiation is reabsorbed in the

upstream material and if the shock is travelling fast enough a supersonic, radiative heat

wave (rhw) breaks away from the shock in a situation analogous to a supercritical shock

wave [6]. This case was studied by Reinicke and Meyer-ter-Vehn [25], who showed that

the shock and rhw will coexist and eventually propagate as r / t� where � is larger for

the shock . This means that the shock would eventually catch rhw, after which a second

state is obtained in which rhw is of the ablative type and the shock moves in a classical

Sedov-Taylor trajectory with � = 2=5:

In our earlier experiments [2] we came across an additional possibility for optically thin

environments, namely that prior to the shock catching rhw, the latter enters a transonic

regime, stalls, and generates a second shock (s2). We showed that an analytical estimate

for the formation radius of s2 can be obtained from a standard result of heat front physics

[6, 26, 27], using the steady, 1D �uid equations for conservation of mass �1u1 = �2u2 and

momentum p1 + �1u
2
1 = p2 + �2u

2
2 in the frame of rhw, where subscript 1 denotes the

region ahead of rhw, and subscript 2 denotes the region behind rhw. We have dropped
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the time-dependent terms in the conservation equations as these are neglible compared to

the spatial gradient terms; the front thickness of rhw is very small in comparison to the

rhw radius, so even though rhw moves with variable (slowing) velocity, physical quantities

remain practically unchanged during the small time required to traverse the front width

[6, 25]. This is particularly true as rhw sharpens up just prior to generating s2. Assuming

an ideal gas (so that p = �c2 where c is the speed of sound) we combine the conservation

equations to obtain

�2
�1
=
c21 + u

2
1 �

q
(c21 + u

2
1)
2 � 4c22u21

2c22
: (1)

A supersonic (u1 > c1) rhw and a real compression � � �2=�1 requires

u1 � c2 +
q
c22 � c21 � 2c2 (2)

(where the approximation is valid because the temperature behind rhw is much higher than

the temperature before it), i.e., requires the mixed Mach number

M � u1
c2
� 2: (3)

Once the Mach number drops to 2, rhw can no longer ful�ll Eq. 1, and s2 forms at rhw.

s2 immediately moves ahead of rhw and acts to slow down u1 so that rhw is now subsonic,

satisfying

u1 � c2 �
q
c22 � c21 �

c21
2c2
: (4)

To estimate the radius rh of rhw at the moment when its Mach number is 2, and thus the

formation radius of s2, we can assume a radiative conductivity (with units Jm�1K�1 s�1)

of the ambient gas of the form

� = �0�
aT b (5)

and use Barenblatt�s solution for an instantaneous point release of energy [25, 28]:

rh (t) = r0t
� (6)
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where

r0 =
�
Kb
1K2

��
(7)

� =
1

3b+ 2
(8)

K1 =
 � 1

2�B
�
3
2
; 1 + 1

b

� E
�0

(9)

K2 =
2�0 ( � 1)
�b+1�1�a0

1

b�
; (10)

where  is the adiabatic index, B (x; y) is the beta function, and � is the gas constant from

the ideal gas equation of state

( � 1) e = �T; (11)

where e is the speci�c internal energy [with units J = kg; the heat capacity cv = �= ( � 1)].
The rhw Mach number is obtained from

u1 =
drh
dt

(12)

and

c2 (r = 0) =
�
K2
1K

�3
2 t

�3��=2 = K�
1K

�3�=2
2 (rh=r0)

�3=2 : (13)

Using the sound speed at r = 0 is a reasonable approximation as the temperature pro�le

inside rhw is quite �at [2, 25, 28]. We should also point out that using Barenblatt�s

solution to estimate the rhw radius assumes that radiation can be treated in the di¤usion

approximation. In the earliest expansion phase this is not the case, but Barenblatt�s solution

turns out to be a reasonable approximation when the wave has cooled somewhat and has

large enough optical depth. For pure Xe this would be at t � 20 ns; at this time the mixed
Mach number M � 9, the rhw radius rh � 4mm; compared to rs � 1:4mm, and only

about one eighth the total energy still resides in the initial shock (the rest is in the rhw).

For pure Xe with �0 � 10�5 g = cm3; �0 = 1� 10�44 kg�1:2K�11m�5:6 s�3; a = �2:2; b = 10;
and E = 5J; this analytical estimate says that K1 = 1:79; K2 = 5:0 � 10�61; and that the
rhw Mach number drops to Mach 2 when rh � 10mm (and the speed of sound behind rwh
is c2 � 1:4 km = s), in reasonable agreement with the experiment where we �rst observed s2
with r � 12mm [2].

We report here on a new series of experiments using mixtures of Xe and N2. The goal of

these experiments was to further study the previously unreported second shock, to see what
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the e¤ect is of changing the radiative conductivity (or equivalently the opacity) and the heat

capacity, and to see if the above analytical estimate holds under a range of conditions.

III. EXPERIMENT SET-UP AND DIAGNOSTICS

We create spherically expanding blast waves in the following fashion: a high-energy

infrared pulsed laser (1064 nm wavelength) is focused onto the tip of a solid (stainless steel)

pin surrounded by a Xe/N2 mixture with a density of �0 = 3:6 � 10�5 g = cm3. The laser

pulse is 5 ns in duration with energy El � 5 J (the exact energy �uctuates slightly from shot
to shot but is measured and recorded). Most of this energy is deposited in pin material

which then becomes very hot and expands rapidly, pushing at the surrounding gas, setting

up a strong, radiative initial shock (s1), see Fig. 2. We estimate that most (� 98%) of our
relatively modest El � 5 J contribues to plasma expansion and is not re�ected, based on

scaling from earlier experiments [2] with a much higher El � 100 J where only � 25% of the
energy was deposited and using the formula [29] R (1�R) = " exp (G (1�R)) where R is
the re�ectivity, " � 10�9 and assuming G _

p
El. At the end of the laser pulse (t = 5ns), s1

is traveling in excess of 60 km = s and is (at least for mixtures with a signi�cant fraction of Xe)

strongly radiative. When the radius rs � 0:4mm, s1 has swept up enough material that the
details of its initial conditions are unimportant. Radiation from s1 heats the surrounding

gas. The (inverse) Boltzmann number Bo�1 & 50 initially, i.e., s1 radiatively drives a

supersonic heat wave that travels rapidly outward, leaving a large separation between s1

and the radiatively driven heat wave. With time, s1 slows and its ability to radiate e¢ ciently

quickly decreases, while the heat wave becomes a radiative heat wave (rhw) of the di¤usive

type. Also, s1 is traveling into the counter pressure of hot rhw plasma, which is becoming

comparable to the ram pressure; the Mach number of s1 drops rapidly, and the post-shock

compression reduces correspondingly. The Mach number for rhw is also decreasing, and

when it reaches� 2, rhw stalls and creates s2, with a radius measured in earlier experiments
in pure Xe of � 12mm : After this time, s1 continues to weaken until it dissipates, while

s2 is essentially non-radiative and once it has swept up enough mass (doubled its initial

radius), it propagates like rs / t2=5.
To image s1 and s2 on spatial scales up to � 5 cm, we used two lenses in a telescope

con�guration and a gated, single-frame, high-speed CCD camera (2 ns gate), along with
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a low energy, green laser pulse (� = 532 nm wavelength, 15 ns duration) as a backlighter.

We employed a schlieren technique with a vertical knife edge at the telescope focal point

to remove light which had not been de�ected by the plasma. With this method, image

brightness corresponds to the spatial derivative of plasma electron density in the horizontal

direction, so that vertical structures in the plasma are readily seen. A monochromatic �lter

was placed in front of the camera to prevent damage to the CCD (damage occured in our

previous experiments), with the disadvantage that glow from the heated plasma could not

be seen in this experiment (c.f. Fig. 1).

A spectrometer was used to obtain spectral line intensity as a function of position (ahead

of and behind the blast wave), which was then Abel inverted to get spectral line intensity as

a function of radius. An estimate of temperature as a function of radius was then calculated

using the Saha equation from pair-wise line ratios. This was done in pure N2 using two NII

lines (399.5 nm and 444.70 nm) and two NIII lines (451:485 nm and 463:413 nm) and in

pure Xe using three XeII lines, 441:48 nm, 446:22 nm, and 460:3 nm : These measurements

were done at relatively late experimental times (e.g., around the formation time of s2),

when the electron-ion collisional time scale is about one order of magnitude shorter than the

characteristic time scale for rhw, justifying using the Saha equation to obtain reasonable

temperature estimates.

IV. RESULTS

Keeping the density constant (by keeping the partial pressures pXemXe + pN2mN2 = C

where C is a constant), we varied the composition of the ambient gas from 100% Xe (by

mass) to 100% N2 and tracked the formation of the second shock. We found that the higher

the fraction of N2, the smaller the formation radius became (and the sooner the second

shock forms). This trend is shown in Fig. 3, where each column represent a certain mixture

of Xe and N2, and time runs toward the bottom of each column. In the top row of images,

we only see the initial shock. As we follow each column down, the second shock forms, and

the initial shock dissipates; this should be particularly obvious around the middle of each

column. The bottom row shows images where only the second shock can be seen.

It is worthwhile noting the experimental di¢ culty in observing the second shock. Previ-

ous experiments with similar laser energies and gas densities have not observed secondary
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shock formation, and this may be because of any of the following: (a) the experiment was

studying radiative shocks, so images were obtained only relatively early in time, while s1 is

still radiative, (b) the experiment was studying blast waves, so images were only obtained

relatively late in time, to ensure that a stable Sedov-Taylor blast-wave had formed, (c) im-

ages were too sparse in time, i.e., the sequence of images shows s1 in the �rst few images,

then switches to s2 without capturing the moments when both exist simultaneously, and

the experimenter believed - quite naturally - that the same shock was observed in all the

images, (d) the schlieren technique was not sensitive enough. The latter condition is one that

we struggled with. When the knife-edge position was not carefully calibrated, we obtained

images for the intermediate times (when both shocks exist) that simply show no shock at all

(both shocks are too weak to perturb the plasma enough to overcome the crudely positioned

knife-edge).

Figure 3 can be represented in a bar plot, where each bar represents an uncertainty in

the formation radius of the second shock; the lower end of each bar is the radius of s1 in an

image where the second shock cannot yet be seen, while the upper end is the radius of s2 in

the earliest image for each mixture in which we can see both s1 and s2. We have measured

all shock radii and are showing this data in Fig. 4. Also shown in Fig. 4 are second shock

formation radii from our previous work in pure Xe [2].

V. DISCUSSION

Barenblatt�s solution assumes a radiative heat conductivity which is a function of tem-

perature (and density), but the heat capacity is implicitly assumed to be constant. This

means that, at best, Barenblatt�s solution will only be an approximation to real gases with

non-constant heat capacities. To use Barenblatt�s solution, a constant heat capacity was

based, for each mixture, on a temperature estimated from the emission spectroscopy data;

T � 3:2 eV for pure Xe, T � 5:5 eV for pure N2;and temperatures interpolated between

these two values for the mixtures. The following steps illustrate our method in estimating

when the rhw becomes transonic and s2 forms:

1. The adiabatic index  for each gas mixture is assumed unknown and is estimated from

8



Sedov-Taylor�s formula for a self-similar blast wave:

rs =

 
75

16�

( � 1) ( + 1)2

3 � 1

! 1
5 �

E

�0

� 1
5

t
2
5 ; (14)

where we use the measured blast-wave radius rs from an image obtained at a very late time t

so that the second shock is well-developed past the point where its initial conditions matter,

in addition to the recorded laser energy E and measured density �0. We typically �nd that

 � 1:05, consistent with previously published values by Grun et al.
2. The gas constant � is calculated from Eq. 11 using the adiabatic index  from step 1,

an initial estimate of a representative temperature, and a speci�c internal energy

e = e0�
fT g (15)

with parameters e0, f , and g calculated using the lasnex code [31] and listed in Table I.

3. The various parameters appearing in Barenblatt�s solution (in Eqs. 7-10) are calculated

using the adiabatic index  from step 1, the gas constant � from step 2, and a radiative

conductivity from Eq. 5 using the parameters �0; a; and b, obtained for pure nitrogen from

the opal tables [32] and for the mixtures calculated according to the methods in the sta

code [33] using the Lawrence Livermore vista code, and listed in Table I.

4. The rhw radius rh can be solved for analytically using Eqs. 12-13 above (but the

expression is too complicated to cast any light on the physics and is not included here). We

then set the mixed mach numberM = u1=c2 = 2 to obtain the radius r2 = rhjM=2 when the

second shock forms. [Note that if the parameter b � 1 (which is the case here) the simple

estimate

r2 �
�
Kb
1K2

6b

�1=3b
(16)

can be used to 15% or better accuracy.]

As a �nal check one could calculate the temperature

TBarenblatt =
c22
�
: (17)

inside rhw and compare to the initial estimate of T obtained from our spectrometer data.

We �nd that a temperature calculated from Eq. 17 agrees quite well with the initial estimate

and the discrepancy is less than 0:6 eV in all cases. If we go back and use TBarenblatt in step

2 we get less than a 4% di¤erence in our �nal answer for r2:
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The calculated values for r2 in seven di¤erent mixes of Xe and N2 are shown alongside

the experimental data in Fig. 4. Higher fractions of N2 result in smaller s2 formation radii

(primarily due to the higher heat capacity), and generally the agreement between analytical

estimate and the experimental data is quite good.

In the astrophysical case, second shocks are unlikely to form around the most energetic

events, such as a supernovae (with say E = 1046 J or 1053 erg). Either one chooses brem-

strahlung (�0 = 8:3 � 10�28 kg3K�15=2m�5 s�3; a = �2; b = 6:5) or compton scattering

(�0 = 7:6� 10�6 kg2K�4m�2 s�3; a = �1; b = 3) or some other physical process to limit the
radiative conductivity, one �nds that in interstellar hydrogen (� = 1 atom/cm3), a second

shock would not form in a time shorter than the lifetime of the universe. If this energy was

released in a denser environment, say � = 105 atoms/cm3 (equivalent to the higher density

regions in the horsehead nebula), rhw would slow to Mach 2 in a shorter time, but would

still have a transition radius of at least 500 lightyears, larger than any astrophysical object

with this density (the horsehead nebula is about 25 lightyears across). In other words, if

one wishes to observe second shock formation in interstellar space, less energetic events are

better candidates. An energy release of E = 1035 J in a density of � = 105 atoms/cm3 would

produce a second shock with a formation radius of about one lightyear.

VI. SUMMARY

We have varied in a systematic way the opacity and heat capacity of the gas into which a

spherical shock wave expands (by mixing Xe with N2 keeping the mass density constant) and

measured when a second shock forms ahead of the initial shock. The formation radius of the

second shock as a function of Xe mass fraction is consistent with an analytical estimate where

the expansion of a radiatively driven heat wave is estimated using Barenblatt�s solution and

the heat wave then stalls as its Mach number drops to � 2.
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FIG. 1: Sequence of events (time increasing from left to right): (a) A spherical shock, s1, radiatively

drives a heat wave far ahead of itself. (b) As s1 expands it slows down and it radiates less and

less. The radiative heat wave, rhw, also slows down and its expansion rate can be estimated using

Barenblatt�s solution. (c) s1 gains on rhw, but before it catches up, rhw becomes transonic and

gives birth to a second shock wave, s2. rhw immediately falls behind s2, which itself is too slow

to be radiative. (d) s1 continues to weaken as it propagates in the downstream material of s2 and

soon dissipates. In the experiment, shocks that are drawn here with solid curves are visible in the

schlieren images, features drawn with dashed curves are not.

FIG. 2: Experiment set-up: A high-energy infrared laser pulse ablates a small amount of pin

material (stainless steel) which expands rapidly, pushing at a surrounding gas (mixture of Xe and

N2) setting up an initial shock. The initial shock drives a radiative heat wave ahead of it, which

in turn creates a second shock.
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FIG. 3: Images of shocks in Xe/N2 mixtures with a density �0 = 3:6 � 10�5 g = cm3 created by a

laser focused on a pin (visible in most images). The mixture is the same within each column of

images, and the mass-fraction of each gas is written at the top of the column. The number at the

top left of each image is the experimental time in nanoseconds (after the laser pulse).
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FIG. 4: Calculated and experimentally observed second shock formation radii as a function of Xe

mass fraction in Xe/N2 mixtures. The lower/upper end of each bar represents an image where the

second shock cannot/can be seen.
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