Combinatorial Synthesis of Oxygen Reduction Electrocatalysts by Spray Pyrolysis

Paul Napolitano, David Dericotte, Rimple Bhatia, Paolina Atanassova, Mark Hampden-Smith, Toivo Kodas
Contents

- SMP powder manufacturing platform
- Combinatorial discovery approach
 - Combinatorial system design
 - Choice, synthesis, characterization and testing of electrocatalysts
 - MEA structure development
- Benchmark synthesis of binary and ternary alloy ORR catalysts
Challenges for Combinatorial Discovery

- The goal of combinatorial discovery is to screen as many materials or properties as possible in a short time = many small size samples
- Discover the materials on the system that will be used for high volume manufacturing to produce the same material highly reproducibly
- Does the microstructure and composition really represent what can be reproduced at a commercial scale?
- Use a powder production system that is sufficiently flexible to reproduce discovered compositions
Technology Platform: SMP’s Spray Based Manufacturing

- Low cost manufacturing
 - Single step processing
 - Highly controllable and reproducible
 - “Green” process with minimal waste streams

- Agile platform
 - Not material specific
 - Inorganics, organics, metals, metal oxides
 - Complex compositions

- Ability to engineer critical properties
 - Particle morphologies and size distributions
 - Bulk and surface chemistries and structures
 - Dispersion, crystallinity and size distribution of catalytically active phase
Technology Platform: Process Flow Diagram

- Independent control over:
 - aggregate morphology and size distribution
 - the dispersion and composition of catalytically active phase
Hierarchical Structure of SMP
Electrocatalyst

Relevant patents: US 6,103,393 US 6,165247 US 6,159,267

PtRu alloy nanocrystals
porous agglomerate of carbon particles
carbon particle
Simultaneous Structure Control

- Scale up reproducibility
- Batch-to-batch reproducibility
- Sub-batch reproducibility

<table>
<thead>
<tr>
<th>Powder batch number</th>
<th>Surface area [m²/g]</th>
<th>Average pore diameter [nm]</th>
<th>Pt crystallite size [Å]</th>
</tr>
</thead>
<tbody>
<tr>
<td>163C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>164A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>164B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>191A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
From Combinatorial Discovery to Production

Production
1,000’s Kg range

Pilot
Kgs range

Research
100g range
Title of Project: Development of High-Performance, Low-Pt Cathodes Containing New Catalysts and Layer Structure

Duration: 4 years, September 2001- September 2005

DOE Program Manager: JoAnn Milliken

Subcontractors: DuPont, CFDRC

Stack testing: GM
Technical Goals and Objectives

- Current state of the art:
 - 2002 - 2 gPt/kW at 0.8 V; > 1000 h
 - 0.65 mg Pt/cm² loading
 - recent reports - 1 gPt/kW

- DOE target performance:
 - 2004 - 0.6 gPt/kW at 0.8 V; > 4000 h
 - 0.20 mg Pt/cm² loading
 - 2008 - 0.2 gPt/kW at 0.8 V; > 5000 h
 - 0.05 mg Pt/cm² loading
Technical Concept

Effort 1:
- Discovery of new, low Pt catalyst compositions and particle microstructures

Effort 2:
- Modeling and deposition of engineered cathode layers

Effort 1:
- SMP
- DuPont

Effort 2:
- SMP/
- CFDRC

Short Stack Testing:
- GM
Work Plan Effort 1: Combinatorial Approach

- Combinatorial Catalyst Microstructure Discovery
- Catalyst Screening
- Select best candidate from primary screen
- Produce at larger scale
- MEA Testing

- **Combinatorial Powder Synthesis System (CPSS) - SMP**
 - Synthesis of Binary Alloys and Mixed Metal/Metal Oxides
 - Synthesis of Ternary Alloys

- **Rapid Catalyst Screening for ORR Activity - DuPont**
Combinatorial Approach for Electrocatalyst Discovery

- **SMP combinatorial discovery platform:**
 - Fully automated powder production
 - Compatible with scaled manufacturing

- **Critical elements of the approach:**
 - Some combinatorial platforms rely on high throughput techniques for model systems followed by scale up in supported form
 - **SMP approach will rely on fewer carefully chosen compositions made in supported form**
 - Screening focused on test configurations such as half cell and MEA configurations)
Components of Combinatorial Approach

- **Selection of composition/structure targets** and benchmarking against literature/existing catalysts
- Ensure **high speed generation of samples** with variations in the composition and microstructure: an order of magnitude higher number of samples
- Ensure **rapid primary screens** to evaluate structure/performance of electrocatalyst powders:
 - XRD for structure evaluation (crystallinity, dispersion, alloying)
 - rapid EC performance evaluation in half cell configuration
Combinatorial Powder Synthesis System (CPSS)

Precursor 1 → Reactor
Precursor 2 → Reactor
Precursor 3 → Reactor
Droplet generator

Precursor containers
Flow controllers

Composition

Microstructure

• Surface area
• Dispersion
• Composition
• Crystallinity
• Phase
• Surface composition
• Morphology
• Porosity
• Pore structure
• Particle size & distribution

Concentration
Precursor 1
Precursor 2
Precursor 3

Time
Profile 1
Profile 2
Profile 3

Time
SMP Powder Production Process

Atomization Zone
- Reservoir
- Carrier Gas

OR
- Carrier Gas

Reaction Zone

Collection Zone
- Filter Media
- Exhaust Gas

Multi-zone Furnace

Profile 1
Profile 2
Profile 3

Time
Process Automation

Multi-zone Furnace

Profile 1
Profile 2
Profile 3

Time
Automation and Upgrades

<table>
<thead>
<tr>
<th>Process Step</th>
<th>Current Limitation</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precursor delivery</td>
<td>➢ Static precursor composition</td>
<td>➢ Automate delivery</td>
</tr>
<tr>
<td></td>
<td></td>
<td>➢ Add “on-the-fly” preparation</td>
</tr>
<tr>
<td>Automation</td>
<td>➢ Operator required to:</td>
<td>➢ Automate system to:</td>
</tr>
<tr>
<td></td>
<td>• adjust furnace temp</td>
<td>• adjust furnace temp</td>
</tr>
<tr>
<td></td>
<td>• adjust gas flow rate</td>
<td>• adjust gas flow rate</td>
</tr>
<tr>
<td></td>
<td>• replace collection media</td>
<td>• isolate powder sample</td>
</tr>
<tr>
<td>Data Collection</td>
<td>➢ Limited data collection performed by operator</td>
<td>➢ Use SCADA to acquire more data, control process variables, perform statistical analysis</td>
</tr>
<tr>
<td>Safety</td>
<td>➢ Safety systems installed to protect operator, system and powder</td>
<td>➢ Improve further safety controls</td>
</tr>
</tbody>
</table>
Selection of Composition/Structure Targets

Selection criteria for electrocatalyst compositions:

- Cost of components - raw materials, precursor cost
- Cost of manufacturing (precursors, processing steps) - fab cost
- Demonstrated performance advantage
- Possible performance advantage based on established general trends
- Long term stability
 - stable in acidic media/resistant to corrosion
 - sustainable performance at high potentials
 - sustainable dispersion of the active phase

Demonstrate synthesis of complex known compositions and benchmark performance

Develop methodology to down select in the compositional space
Selection of Composition Targets

<table>
<thead>
<tr>
<th>gas</th>
<th>liquid</th>
<th>radioactive</th>
<th>synthetic</th>
<th>toxic</th>
<th>nonmetals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Be</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Ca</td>
<td>Sc</td>
<td>Ti</td>
<td>V</td>
<td>Cr</td>
</tr>
<tr>
<td>Mn</td>
<td>Fe</td>
<td>Co</td>
<td>Ni</td>
<td>Cu</td>
<td>Zn</td>
</tr>
<tr>
<td>Ga</td>
<td>Ge</td>
<td>As</td>
<td>Se</td>
<td>Br</td>
<td>Kr</td>
</tr>
<tr>
<td>Rb</td>
<td>Sr</td>
<td>Y</td>
<td>Zr</td>
<td>Nb</td>
<td>Mo</td>
</tr>
<tr>
<td>Tc</td>
<td>Ru</td>
<td>Rh</td>
<td>Pd</td>
<td>Ag</td>
<td>Cd</td>
</tr>
<tr>
<td>In</td>
<td>Sn</td>
<td>Sb</td>
<td>Te</td>
<td>I</td>
<td>Xe</td>
</tr>
<tr>
<td>Cs</td>
<td>Ba</td>
<td>La</td>
<td>Hf</td>
<td>Ta</td>
<td>W</td>
</tr>
<tr>
<td>Re</td>
<td>Os</td>
<td>Ir</td>
<td>Pt</td>
<td>Au</td>
<td>Hg</td>
</tr>
<tr>
<td>Tl</td>
<td>Pb</td>
<td>Bi</td>
<td>Po</td>
<td>At</td>
<td>Rn</td>
</tr>
<tr>
<td>Fr</td>
<td>Ra</td>
<td>Ac</td>
<td>Rf</td>
<td>Db</td>
<td>Sg</td>
</tr>
<tr>
<td>Bh</td>
<td>Hs</td>
<td>Mt</td>
<td>Uun</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ce</th>
<th>Pr</th>
<th>Nd</th>
<th>Pm</th>
<th>Sm</th>
<th>Eu</th>
<th>Gd</th>
<th>Tb</th>
<th>Dy</th>
<th>Ho</th>
<th>Er</th>
<th>Tm</th>
<th>Yb</th>
<th>Lu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th</td>
<td>Pa</td>
<td>U</td>
<td>Np</td>
<td>Pu</td>
<td>Am</td>
<td>Cm</td>
<td>Bk</td>
<td>Cf</td>
<td>Es</td>
<td>Fm</td>
<td>Md</td>
<td>No</td>
<td>Lr</td>
</tr>
</tbody>
</table>

SUPERIOR MicroPowders
Selection of Composition Targets for Binary Metal-Metal Oxide EC

- Highly oxophillic, soluble oxides, poison to PEM
- Oxides susceptible to corrosion

<table>
<thead>
<tr>
<th>Li</th>
<th>Be</th>
<th>Na</th>
<th>Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>Ca</td>
<td>Sc</td>
<td>Ti</td>
</tr>
<tr>
<td>V</td>
<td>Cr</td>
<td>Mn</td>
<td>Fe</td>
</tr>
<tr>
<td>Co</td>
<td>Ni</td>
<td>Cu</td>
<td>Zn</td>
</tr>
<tr>
<td>Ge</td>
<td>Al</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rb</td>
<td>Sr</td>
<td>Y</td>
<td>Zr</td>
</tr>
<tr>
<td>Nb</td>
<td>Mo</td>
<td>Ru</td>
<td>Rh</td>
</tr>
<tr>
<td>Pd</td>
<td>Ag</td>
<td>In</td>
<td>Sn</td>
</tr>
<tr>
<td>Sb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td>La</td>
<td>Hf</td>
<td>Ta</td>
</tr>
<tr>
<td>W</td>
<td>Re</td>
<td>Os</td>
<td>Ir</td>
</tr>
<tr>
<td>Pt</td>
<td>Au</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce</td>
<td>Pr</td>
<td>Nd</td>
<td></td>
</tr>
<tr>
<td>Sm</td>
<td>Eu</td>
<td>Gd</td>
<td>Tb</td>
</tr>
<tr>
<td>Dy</td>
<td>Ho</td>
<td>Er</td>
<td>Tm</td>
</tr>
<tr>
<td>Yb</td>
<td>Lu</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Further Down Selection: Cost of Raw Materials

Cost [$/100 g]

Elements

- Rh
- Os
- Ir
- Pt
- Au
- V
- Cu
- Zn
- Nb
- Mo
- Ag
- Sn
- Sb
- Hf
- Ta
- W
- Re
- Bi

Cost Range: $0 - $14000

0 5 10 15 20 25

Cost [$/100 g]
Further Selection Refinement: Activity in ORR

- Role of electronic and geometric parameters
 - d-band vacancy; % d character, latent heat of sublimation, heat of adsorption, strength of adsorption bond (M-O)
 - crystal structure; interatomic distance, crystallite size, defects

- Two main trends in dependence of electrochemical performance as function of physicochemical property:
 - "volcano" type - current density v.s M-O bond strength, latent heat of sublimation, d-band vacancies of electrode metal, % d-character
 - linear type - specific activity vs. nearest-neighbor distance

- Particle-size effects
 - change in concentration of various crystallographic sites with change in particle size

Examples of Particle Size Effects

Mass-averaged distribution for MAD (111), MAD (e-c)

Surface-averaged distribution for SAD (111), SAD (e-c)

Particle size (nm)
Synthesis of Pt and Pt-alloys Electro catalysts

- **Pt precursor development** to ensure compatibility with various other precursors used for alloys
- **Optimization of active phase loadings and type of carbon support**
 - 5, 10, 20, 30 wt.% Pt/SB
 - 60 wt.% Pt/C (high surface area support)
- **Synthesis of selected binary and ternary alloys**
 - binary - Pt\(_x\)Co\(_y\); Pt\(_x\)Pd\(_y\); Pt\(_x\)Cr\(_y\); Pt\(_x\)Ru\(_y\);
 - ternary - Pt\(_x\)Ni\(_y\)Co\(_z\); Pt\(_x\)Cr\(_y\)Co\(_z\);
- **XRD used as a primary screen for degree of alloying and dispersion of active phase**
Synthesis of Ternary Pt-alloys Electro catalysts
Performance of Ternary Pt-alloys Electrocatlysts

20 wt.% Pt\textsubscript{x}Ni\textsubscript{y}Co\textsubscript{z} or Pt/Vulcan XC-72

80 C, 1.5/2.5 stoich at 1A/cm2, 100% RH, Air 30 psig, 15 min/point

0.25 mgM/cm2 total loading
Nafion 112
20 wt.% Pt/C
4.2 gPt/kW
20 wt.% Pt\textsubscript{x}Ni\textsubscript{y}Co\textsubscript{z}/C
2.6 gPt/kW
40 % improvement vs. Pt/C
Performance of Ternary Pt-alloys Electro catalysts

After structure optimization

0.25 mgM/cm² total loading
Nafion 112
20 wt.%
PtₓNiᵧCo₂/C
1.5 gPt/kW

20 wt.% PtₓNiᵧCo₂
80 C, 1.5/2.5 stoich at 1 A/cm², 100% RH, 30 psig,
15 min/point
MEA Structure Optimization

- **Optimization of catalyst and ionomer loadings**
 - 0.1 - 0.6 mg M/cm²
 - In combination with various wt.% M/carbon catalysts

- **Testing with variations in the:**
 - Membrane Nafion 112, Nafion 117, Nafion 1035
 - Catalyst (carbon): Ionomer ratio in the electrode inks
 - GDL type
 - Humidification level for gases

- **Electrode deposition technique**
 - Method A
 - Method B
Various Catalysts and Pt loadings

80 °C, 30 psig, 100% RH gases, flow at 1.2/2.5 stoic @ 1A/sqcm

Potential [mV] vs. Current density [mA/cm²] for different Pt loadings:
- 0.65 mgPt/sqcm
- 0.45 mgPt/sq cm
- 0.25 mgPt/sqcm
Various Catalysts and Pt loadings

<table>
<thead>
<tr>
<th>Pt loading [mgPt/cm²]</th>
<th>gPt/kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>0.25</td>
</tr>
<tr>
<td>1.9</td>
<td>0.45</td>
</tr>
<tr>
<td>2.2</td>
<td>0.65</td>
</tr>
</tbody>
</table>
Deposition Method A vs. B

- Method A:
 - 6.3 gPt/kW
 - 20wt.%Pt/C
 - Nafion 112

- Method B:
 - 0.25 mgPt/cm² total loading
 - Current: 1.9 gPt/kW
Performance Targets

<table>
<thead>
<tr>
<th>Project year</th>
<th>P [W/cm²]</th>
<th>Pt loading [mgPt/cm²]</th>
<th>gPt/kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.12</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>2</td>
<td>0.16</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>3</td>
<td>0.24</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.32</td>
<td>0.25</td>
<td>0.6</td>
</tr>
</tbody>
</table>
Accomplishments

- Combinatorial system designed and assembly on schedule
- Rapid screening method in place and benchmarked
- Binary and ternary Pt-Alloy catalysts synthesized and improved performance demonstrated
- Strategy for combinatorial approach in place
- All critical components for combinatorial discovery based on spray pyrolysis approach in place
- Spray-based powder manufacturing offers the best opportunity to reproduce the discovery and scale the commercially useful volumes
Acknowledgements

- DOE OTT, Award DE-FC0402AL67620, Topic 1A1
- DOE Program Manager: JoAnn Milliken
- SMP for cost share funding
- The whole SMP team and especially:
 Jim Brewster, Jenny Plakio, Heat Quiggle