Heat Transfer in Nonisothermal Liquid Injection Experiments in Porous Media

PDF Version Also Available for Download.

Description

This paper discusses an analysis of the heat transfer phenomena in the bench-scale experiments being carried out in the Stanford Geothermal Program. The basis of this analysis was a series of simplified mathematical models of heat and mass transport in fine-grained porous media. The analysis determined that the thermal capacity of the coreholder system caused heat losses from the core which were not steady at early and medium times. This phenomenon had not been recognized previously. This was in spite of the fact that various authors previously had attempted to match the experimental behavior under discussion with their sophisticated computer ... continued below

Physical Description

46-51

Creation Information

Atkinson, Paul G. December 3, 1976.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

This paper discusses an analysis of the heat transfer phenomena in the bench-scale experiments being carried out in the Stanford Geothermal Program. The basis of this analysis was a series of simplified mathematical models of heat and mass transport in fine-grained porous media. The analysis determined that the thermal capacity of the coreholder system caused heat losses from the core which were not steady at early and medium times. This phenomenon had not been recognized previously. This was in spite of the fact that various authors previously had attempted to match the experimental behavior under discussion with their sophisticated computer models. These computer models did not account for the transient nature of the heat losses from the core. 8 refs., 3 figs.

Physical Description

46-51

Subjects

Source

  • Proceedings Second Workshop Geothermal Reservoir Engineering, Stanford University, Stanford, Calif., December 1-3, 1976

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SGP-TR-20-9
  • Grant Number: E043-326-PA-50
  • Office of Scientific & Technical Information Report Number: 887310
  • Archival Resource Key: ark:/67531/metadc886431

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 3, 1976

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 5, 2016, 7:28 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Atkinson, Paul G. Heat Transfer in Nonisothermal Liquid Injection Experiments in Porous Media, article, December 3, 1976; United States. (digital.library.unt.edu/ark:/67531/metadc886431/: accessed October 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.