Generation and Characterization of Attosecond Pulses

PDF Version Also Available for Download.

Description

The research undertaken in this project has been directed toward the area of attoscience, in particular the problem of attosecond metrology. That is, the accurate determination of the electric field of attosecond XUV radiation. This outstanding problem has been identified as a critical technology for further development of the field, and our research adds to the area by providing the first method for characterization using the harmonic radiation itself as a tool. The technical effectiveness of this approach is very high, since it is vastly easier to detect XUV radiation directly than via the spectrum of photoelectrons liberated from atoms ... continued below

Creation Information

Walmsley, Ian A. & Boyd, Robert W. April 24, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The research undertaken in this project has been directed toward the area of attoscience, in particular the problem of attosecond metrology. That is, the accurate determination of the electric field of attosecond XUV radiation. This outstanding problem has been identified as a critical technology for further development of the field, and our research adds to the area by providing the first method for characterization using the harmonic radiation itself as a tool. The technical effectiveness of this approach is very high, since it is vastly easier to detect XUV radiation directly than via the spectrum of photoelectrons liberated from atoms by it. This means that the experimental data rate can be much higher in principle using all-optical detection that electron detection, which will greatly aid the utility of harmonic XUV sources in attoscience applications. There are as yet no direct public benefits from this area of scientific research, though access to material structural dynamics on unprecedented brief timescales are expected to yield significant benefits for the future.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DEFG0201ER15156_Final
  • Grant Number: FG02-01ER15156
  • DOI: 10.2172/881556 | External Link
  • Office of Scientific & Technical Information Report Number: 881556
  • Archival Resource Key: ark:/67531/metadc886362

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 24, 2006

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 7, 2016, 2:08 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Walmsley, Ian A. & Boyd, Robert W. Generation and Characterization of Attosecond Pulses, report, April 24, 2006; United States. (digital.library.unt.edu/ark:/67531/metadc886362/: accessed August 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.