Evolution of the thermal cap in two wells from the Salton Sea geothermal system, California

PDF Version Also Available for Download.

Description

The Salton Sea geothermal system is overlain by a thermal cap of low permeability rocks that restricts the upward movement of the high-temperature reservoir brines. Petrographic and fluid inclusion data from two wells show that the thermal cap in the southern part of the field consists of an upper layer of lacustrine and evaporite deposits with low initial permeabilities and a lower layer of deltaic sandstones. The sandstones were incorporated into the thermal cap as downward percolating fluids deposited anhydrite and calcite in the pore space of the rocks, reducing their permeabilities. During development of the thermal cap, base-metal sulfides, ... continued below

Physical Description

107-112

Creation Information

Moore, Joseph N. & Adams, Michael C. January 1, 1988.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The Salton Sea geothermal system is overlain by a thermal cap of low permeability rocks that restricts the upward movement of the high-temperature reservoir brines. Petrographic and fluid inclusion data from two wells show that the thermal cap in the southern part of the field consists of an upper layer of lacustrine and evaporite deposits with low initial permeabilities and a lower layer of deltaic sandstones. The sandstones were incorporated into the thermal cap as downward percolating fluids deposited anhydrite and calcite in the pore space of the rocks, reducing their permeabilities. During development of the thermal cap, base-metal sulfides, potassium feldspar and quartz veins were deposited by brines from higher temperature portions of the system.

Physical Description

107-112

Subjects

Source

  • Proceedings, thirteenth workshop on geothermal reservoir engineering, Stanford University, Stanford, CA, January 19-21, 1988

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SGP-TR-113-15
  • Grant Number: AS07-84ID12529
  • Office of Scientific & Technical Information Report Number: 887154
  • Archival Resource Key: ark:/67531/metadc886358

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1988

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 28, 2016, 1:48 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Moore, Joseph N. & Adams, Michael C. Evolution of the thermal cap in two wells from the Salton Sea geothermal system, California, article, January 1, 1988; United States. (digital.library.unt.edu/ark:/67531/metadc886358/: accessed August 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.