Preface to Symposium: Matter at Extreme Conditions: Theory and Application

PDF Version Also Available for Download.

Description

The subject of ''Matter at Extreme Conditions'' encompasses a wide range of phenomena the thrust of which is to address the physical and chemical behaviors of materials exposed to ''abnormal'' conditions of high pressures, temperature extremes, or external fields. Recent advances in theoretical methodologies and first principle computational studies have predicted unusual properties and unraveled a few surprises when matter is subjected to such strains: a reversed and anomalous Doppler effects in shocked periodic media, the possible existence of low temperature liquid metallic state of hydrogen, and a superionic phase of water at high temperature and pressure. A unified approach ... continued below

Physical Description

PDF-file: 3 pages; size: 82.6 Kbytes

Creation Information

Manaa, M R July 20, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The subject of ''Matter at Extreme Conditions'' encompasses a wide range of phenomena the thrust of which is to address the physical and chemical behaviors of materials exposed to ''abnormal'' conditions of high pressures, temperature extremes, or external fields. Recent advances in theoretical methodologies and first principle computational studies have predicted unusual properties and unraveled a few surprises when matter is subjected to such strains: a reversed and anomalous Doppler effects in shocked periodic media, the possible existence of low temperature liquid metallic state of hydrogen, and a superionic phase of water at high temperature and pressure. A unified approach from quantum mechanical principles allows for exploring such diverse and disparate subjects as ultracold plasmas in a strong magnetic field, and the dynamic aspects of Bose-Einstein condensates. These topics, which are aptly presented in this symposium, are but a few examples of interesting discoveries and methodologies in this active and exciting area of research. The development of reactive force fields from quantum mechanical principles for use in conjunction with molecular dynamics provide us with an invaluable tool for large-scale simulations to study the chemical transformations and decomposition products of complex organic systems at extreme conditions. Simulations implementing classical fields can provide an unprecedented access to the short time scales of chemical events that occur in dense fluids at high-temperature, and for the study of atomic clusters under strong laser pulses.

Physical Description

PDF-file: 3 pages; size: 82.6 Kbytes

Source

  • Presented at: International Conference of Computational Methods in Sciences and Engineering, Loutraki, Korinthos, Greece, Oct 21 - Oct 26, 2005

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-PROC-213935
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 881663
  • Archival Resource Key: ark:/67531/metadc886262

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 20, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 6, 2016, 4:18 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Manaa, M R. Preface to Symposium: Matter at Extreme Conditions: Theory and Application, article, July 20, 2005; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc886262/: accessed August 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.