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We present non-equilibrium molecular dynamics (MD) simulations of wave propagation in 

nanocrystals. We find that the width of the traveling wave front increases with grain size, d, as 

d1/2. This width also decreases with the pressure behind the front. We extrapolate our results to 

micro-crystals and obtain reasonable agreement with experimental data. In addition, our 

extrapolation agrees with models that only take into account the various velocities of propagation 

along different crystalline orientations, without including grain boundary effects. Our results 

indicate that, even at the nanoscale, the role of grain boundaries as scattering centers or as 

sources of plasticity does not increase significantly the width of the traveling wave. 

 

INTRODUCTION 

Nanocrystals have been extensively studied, both in experiments1 and simulations2-4, for 

their numerous beneficial properties, for instance for their large strength. In general, 

continuum-scale plasticity models only include polycrystalline effects by averaging over 

various crystalline directions to obtain some “effective” isotropic material5. There are several 

models that do include full polycrystalline anisotropy, but where grain boundaries (GB) are 

considered infinitesimally thin, or not influencing the deformation of the material6. Few 

recent models have tried to incorporate the role of grain boundaries7,8, but the connection to 

atomic-scale processes is only recently emerging9. 
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Many current experiments1 and most atomistic simulations on nanocrystals2-4 involve 

homogeneous deformation of the material, i.e. the whole system is subjected to the same 

deformation. However, there may be instances, especially at very high strain rates, where this 

would be no longer true10; a wave will travel trough the material, with deformed material 

behind the wave front. Here we focus on how the nanocrystalline structure can change the 

wave propagation, due to polycrystalline effects. It is important to understand in detail the 

response of polycrystalline materials to wave propagation for a number of applications. For 

instance, the National Ignition Facility (NIF)11 will require polycrystalline ignition targets 

where the wave front has to be extremely smooth to avoid Rayleigh-Taylor12 instabilities 

caused by perturbations due to the grain structure. Such instabilities can grow resulting in a 

final compression diminished below the desired value. 

There has been a large number of both experimental13-16 and continuum modeling 

studies10,17-23 on wave propagation in polycrystals, and samples with different grain size do 

show grain size dependence in wave propagation13,16,18,21. However, models that include 

atomic-level information are lacking. Fig. 1 shows a schematic of a wave traversing a 

polycrystal. In Fig. 1(a), the wave is crossing a single crystal, and the wave front is “straight”, 

since there are no perturbations (except for possible plasticity or phase transformations). A 

polycrystal introduces different wave velocities in each grain, with preferred wave 

propagation directions, as shown in Fig. 1(b). This fact alone would greatly enhance the wave 

front width, if the difference between propagation velocities is not negligible. For instance, 

for many fcc metals, the sound velocity along the “fast” direction, can be 10-25% larger than 

the velocity along the “slow” direction17,18,24. Some models do include the role of anisotropy 

leading to refraction of the wave, for instance, by increasing the effective path it travels18. In 
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addition to the polycrystal anisotropy, GB could play a role as scattering centers, or barriers to 

the wave transmission, with a fraction of the wave dissipated, as indicated in Fig. 1(c). 

Finally, Fig. 1(d) shows that GB can also act as sources of dislocations, where the plastic 

deformation may change the width of the wave front. There are several calculations17,18,21 

estimating the effect sketched in Fig. 1(b), but there are no analytical or semi-analytical 

models to predict shock width for a given grain size. Although there have been a few studies 

for single grain boundaries25,26, there are no studies regarding the effects sketched in Figs. 

1(c) and (d) in polycrystals. Following Fig. 1, the general expression of the width of the front, 

∆z, could be assumed to be the sum of (as a first approximation) independent contributions 

from Figs. 1(b)-(c): 

∆z = ∆zaniso + ∆zGBscatt + ∆zplastic                         (1). 

We can obtain an upper estimate of ∆zaniso from a 2D propagation case as follows. Imagine 

two rows of grains, one consisting only of grains where the velocity is “slow” and the other 

where the velocity is “fast”. The spread ∆z of the front after a time t will be ∆v t, where ∆v is 

the velocity differential. For a sample of fixed length L, with grains of size d, L/d=Ng is the 

mean number of traversed grains, and t=L/<v>. Therefore we can write:  

∆z = ( ∆v/<v>) d Ng=Av d Ng,                       (2) 

where we call ( ∆v/<v>) = Av the “anisotropy factor”. For a sample with many “rows”, and 

grains of size d, with the same number of “slow” and “fast” grains randomly distributed, one 

would still expect a linear dependence of ∆z with the anisotropy factor. However, there will 

be a large number of “rows” where the number of “slow” and “fast” grains will be roughly the 

same, giving ∆zaniso~0. Assuming a power law form for the grain size dependence, dα, this 

would give a dependence with α<1. The fact that the shock width increases with grain size 
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has been experimentally observed for metals13 and oxides16. Recent modeling21 of this process 

for wave propagation in Be polycrystals gave α~1/2. Note that Eq. (2) also predicts that a 

wave will continue widening with time, or as it traverses more and more grains. 

ATOMISTIC SIMULATIONS 

Typical GBs in real materials are only ~1nm thick, and are difficult to model using 

continuum models. In this paper we use the massively parallel code MDCASK27 to carry out 

atomistic molecular dynamics (MD) simulations of embedded atom method (EAM) copper 

samples28. Prismatic samples were built using the Voronoi construction with random texture3. 

Dislocation cores were identified using a centro-symmetry parameter filter29. We focus on the 

propagation of waves moving faster than the sound speed, i.e. shock waves. There are 

numerous MD simulations of shocks in single crystals24,30-32, but only a limited number on 

polycrystalline materials31-33. We have simulated samples with 0.5-64 million atoms, and 

average grain sizes of 5, 10 and 20 nm on 32-768 CPUs. Further analysis of our simulation 

results is in progress and will be published elsewhere33. Our samples had free surfaces along 

the shock wave direction and periodic boundary conditions in the transverse direction. The 

first few surface layers on one side were chosen as a piston. A step velocity function was 

applied to these piston atoms at the desired piston velocity, Up to create a traveling wave, with 

velocity Us
24. The stress along the shock direction (the shock pressure) behind the front is 

given by the Hugoniot equations30 dealing with mass, momentum and energy conservation at 

the front: PH=ρ0UpUs. The strain behind the front is constant and given by ε=Up/Us. Assuming 

a linear Hugoniot relationship, Us=c0 + s1Up. For Cu, c0=4.0 km/s, and s1=1.524. Our MD 

simulations24 have shown that this equation is a reasonable approximation for this EAM 

potential, especially for strong shocks.  
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Fig. 2 shows snapshots of a simulation with d~5 nm and P=22 GPa (strain is ~10%). 

Despite the small grain size we observe significant dislocation activity, driven by the large 

applied stress. Partial dislocations are emitted from the GB and cross the grain leaving a 

stacking fault behind33, as in previous homogeneous deformation simulations of larger 

grains2,3. Given the large level of plastic activity, one could expect large influences at the 

shock front for the simulated cases, as suggested in Fig. 1(d). In addition, both frames of 

Fig. 2 show refraction of the wave, as seen in Fig. 1(b).  

Fig. 3 shows several snapshots of the velocity profiles in one of our simulations. As the 

piston advances, the wave front advances too, at a faster velocity. The piston drive is a step 

function, but the wave front develops a characteristic width, which is related to the gradient in 

kinetic energy (velocity) observed in Fig. 2. As a working definition of width, we take the 

distance between the edge of the front and the point where the velocity is 95% Up, as shown 

in Fig. 3. The profile in Fig. 3 has been averaged perpendicularly to the propagation direction 

over about 10 grains. However, we can identify the width of the wave along the shock 

direction with the width of the fluctuations normal to the direction of propagation. Close 

inspection of simulation snapshots, like those in fig. 2 shows that this identification is roughly 

valid. 

Fig. 4 shows the width, normalized to the grain size, versus pressure and grain size. We 

have adopted a simple functional form to fit our calculations. For Cu, Av ~0.25 will depend on 

pressure only weakly in the interval studied, and it is assumed constant. Assuming a  power 

law behavior with grain size and pressure, the observed width can be fit using the following 

relationship:  

∆z/d=C Av (d/do)α (P/Po)β.                    (3) 
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Setting do=10 nm, and Po=47 GPa, we fit the data to get C~5.4; α~ -1/2 and β~ -3/4. As the 

shock pressure increases, plasticity also increases, but the overall result is a decrease in the 

width of the front, as seen in experiments and predicted by viscoplastic models34. This leads 

to a steep increase of the strain rate with pressure, as measured for strong, overdriven shocks. 

As mentioned before, the d1/2 grain size dependence is the same dependence that was recently 

found in simulations21 of micro-scale polycrystalline Be which did not include GB effects, 

indicating that this dependence may be somewhat general, and that the role of GBs may be 

relatively small for all cases. In fact, we note that dislocation activity does not seem 

significantly to widen the relatively sharp front inside grains, as seen in Fig. 2. 

A continuum-level model has shown that the wave front width actually increases with 

time17, i.e. the irregularities in the front are enhanced as the wave traverses more grains. 

Experimental data, however, remains scarce and gives only marginal effects14,15. Fig. 5 shows 

our results, for samples that are ~400 fcc cells (~150 nm) long. After a transient stage, a 

steady state increase in width is reached, which can be modeled with a power law fit including 

the number of grains, as: 

∆z/d=C Av (d/do)−1/2 (P/Po)−3/4(Ng/Ngo)γ,                   (4) 

with Ngo~1 for the 20 nm grains, with γ~1/5. The length of our samples may be too small to 

carry out an appropriate fitting of this dependence. A fit to the continuum model results in ref. 

(15) gives γ~1/2. 

COMPARISON TO WAVE PROPAGATION IN MICRON-SIZED GRAINS 

From Figs. 4-5 we are able to obtain a simple analytical form in good agreement with our 

simulation data. However, given our relatively small simulation data set and the narrow range 

of grain sizes and pressures accessible to atomistic simulations, it may not be valid to 
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extrapolate our results to the micro-scale. Chhabildas and Asay14 have measured an upper 

limit to the rise time of shocks in Cu targets with d~5 µm at few different pressures. They 

obtained times of 1.4-2.2 ns, close to their experimental resolution, while our model gives 

times that are 15-25 times smaller. A worst case-scenario for our model would occur for grain 

sizes larger than 1 micron at low shock pressure, where the width is expected to be large.  

Fig. 6 shows experimental data for the elastic wave in such a case. Calculations from a 

numerical model by M. Meyers18, which only includes anisotropies as in Fig. 1(b), without 

GB effects, are also shown. Extrapolation of our simulation data to the experimental 

conditions for a Ni disk of ~19 mm13 is shown in Fig. 6, using Av~0.17 for Ni in Eq. (4), and 

trise=∆z/Us. We obtain results that are lower by a factor of ~3 than the experimental results and 

the continuum-level model. That our results are of the same order could be considered 

somewhat fortuitous, given the simple functional form we use, the extrapolation from nano to 

micro-scale, and the change of material from Cu to Ni. However, the fact that the continuum 

model has the same behavior with grain size is likely indicating that the same basic governing 

principles are at play here. Since that model only considers the first term in Eq. (1), i.e. the 

anisotropy in the velocity of propagation of the wave for different grains, we suggest that this 

term dominates the development of the width of the wave front. In our simulations, this seems 

to be the case even for nanostructured materials, where one would expect the other two terms 

in Eq. (1) to contribute relatively more than in micron-sized materials. On the other hand, Cu 

has a particularly high anisotropy factor, which could mask the role of the grain boundary-

related terms in developing the width of the front.  

Our results may be relevant to the design of NIF targets using micron-sized grains. Since 

anisotropy dominates the extent of the shock width, using targets with preferential texture, 
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such as the candidate Be targets21 (Av~0.1), would significantly reduce fluctuations at the 

shock front. The same effect would be achieved using a target with a polycrystalline material 

having small sound velocity anisotropies, as in the case of polycrystalline carbon (Av~0)35. 

Future simulations of wave propagation in nanocrystals with hcp and diamond crystalline 

structures, and with different values of the anisotropy parameter, are needed to asses the range 

of applicability of our findings which use fcc Cu nanocrystals. Furthermore, a new generation 

of interferometry techniques15,36,37 will allow for improved measurements of shock width, 

including the possible role of fluctuations36. 

SUMMARY 

We have presented atomistic simulations of shock wave propagation in nanocrystals. The 

width of the wave is a function of grain size, pressure, and time. Simple analytical fits show 

the same scaling with grain size as models not including GB effects21, i.e. as d1/2. In addition, 

extrapolation to micro-scale experiments13 and models18 shows reasonable agreement. Our 

simulations suggest that the effect of GB in the width of the wave front is small compared to 

the effect of anisotropy from crystal to crystal. As a result, continuum level models of wave 

propagation could provide front widths not significantly different from those in more 

computationally expensive atomistic simulations. Additional MD simulations in 

nanomaterials are needed to establish the soundness of our hypothesis, including materials 

with low anisotropy. These simulations would allow more accurate power-law fits and 

possibly a better understanding of the origin of the exponents governing shock width. Finally, 

despite all the limitations of atomistic simulations, our results clearly show that 

nanocrystalline NIF targets would guarantee small fluctuations in the shock front, decreasing 

the probability for unwelcome instabilities12. 
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Figure Captions 

FIG. 1. Schematic of wave propagation in a polycrystal. The dotted line indicates the wave 

front. (a) single crystal.(b)-(d) polycrystals showing: (b) anisotropy due to different crystalline 

orientations, (c) GB acting as scattering centers, and (d) GB enhancing plasticity induced by 

the wave front. 

FIG. 2.  Snapshots of our MD simulation that show the wave front at two different times. 

Grain boundary atoms are overlapped as small black dots. d=5 nm, P=22 GPa, Up=0.5 km/s 

and 10% strain. Atoms are colored according to their kinetic energy (red, high –moving at Up; 

blue, low –unshocked). The upper frame shows a sharp front inside the grains, with some 

refraction due to orientation. Note that the energy levels track the GB, and that in frame (b) 

the front itself tracks the shape of one of the grains. Some of the stacking faults generated by 

the wave are marked with blue circles.  

FIG. 3. Three snapshots from an MD simulation for d=20 nm and P=47 GPa showing 

velocity profiles, averaged in slices one lattice parameter, a0, thick, perpendicular to the shock 

propagation direction. The measurement of the width ∆z at t=12 ps is indicated. 

FIG. 4. Front width, normalized to the grain size, versus grain size and pressure.  Solid lines 

show the fitting from Eq. (3). Width was measured when the wave front had traveled ~70 nm. 

FIG. 5. Evolution of the width with scaled time, for two simulated cases showing the power 

law evolution that gives γ=1/5. 

FIG. 6.  Experimental results13 compared to the continuum level model by Meyers18, and the 

extrapolation of our MD results using Eq. (4). 
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