Development and Evaluation of Nanoscale Sorbents for Mercury Capture from Warm Fuel Gas

PDF Version Also Available for Download.

Description

Gas Technology Institute (GTI), in collaboration with Nanoscale Materials, Inc. (NanoScale), is developing and evaluating several nanocrystalline sorbents for capture of mercury from coal gasifier (such as IGCC) warm fuel gas. The focus of this study is on the understanding of fundamental mechanism of interaction between mercury and nanocrystalline sorbents over a range of fuel gas conditions. Detailed chemical and structural analysis of the sorbents will be carried out using an array of techniques, such as XPS, SEM, XRD, N{sub 2}-adsorption, to understand the mechanism of interaction between the sorbent and mercury. The proposed nanoscale oxides have significantly higher reactivities ... continued below

Creation Information

Jadhav, Raja A. & Meyer, Howard April 1, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Gas Technology Institute (GTI), in collaboration with Nanoscale Materials, Inc. (NanoScale), is developing and evaluating several nanocrystalline sorbents for capture of mercury from coal gasifier (such as IGCC) warm fuel gas. The focus of this study is on the understanding of fundamental mechanism of interaction between mercury and nanocrystalline sorbents over a range of fuel gas conditions. Detailed chemical and structural analysis of the sorbents will be carried out using an array of techniques, such as XPS, SEM, XRD, N{sub 2}-adsorption, to understand the mechanism of interaction between the sorbent and mercury. The proposed nanoscale oxides have significantly higher reactivities as compared to their bulk counterparts, which is a result of high surface area, pore volume, and nanocrystalline structure. These metal oxides/sulfides will be evaluated for their mercury-sorption potential in an experimental setup equipped with state-of-the-art analyzers. Initial screening tests will be carried out in N{sub 2} atmosphere, and two selected sorbents will be evaluated in simulated fuel gas containing H{sub 2}, H{sub 2}S, Hg and other gases. The focus will be on development of sorbents suitable for higher temperature (420-640 K) applications. As part of this Task, several metal oxide (MeO)-based sorbents were evaluated for capture of mercury (Hg) in simulated fuel gas (SFG) atmosphere at temperatures in the range 423-533 K. Nanocrystalline sorbents prepared by NanoScale Materials, Inc. (NanoScale) as well as in-house (GTI) sorbents were evaluated. These supported sorbents were found to be effective in capturing Hg at 423 and 473 K. Based on the desorption studies, physical adsorption was found to be the dominant capture mechanism with lower temperatures favoring capture of Hg. A nanocrystalline sorbent formulation captured 100% of Hg at 423 K with a 4-hr Hg-sorption capacity of 2 mg/g (0.2 wt%) in SFG. The high capacity of the nanocrystalline sorbent is believed to be the result of its high surface area and small crystallite size.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: none
  • Grant Number: FC26-04NT42312
  • DOI: 10.2172/881997 | External Link
  • Office of Scientific & Technical Information Report Number: 881997
  • Archival Resource Key: ark:/67531/metadc886222

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 1, 2006

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 7, 2016, 10:29 a.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Jadhav, Raja A. & Meyer, Howard. Development and Evaluation of Nanoscale Sorbents for Mercury Capture from Warm Fuel Gas, report, April 1, 2006; United States. (digital.library.unt.edu/ark:/67531/metadc886222/: accessed September 25, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.