Finite element analyses of continuous filament ties for masonry applications:final report for the Arquin Corporation.

PDF Version Also Available for Download.

Description

Finite-element analyses were performed to simulate the response of a hypothetical masonry shear wall with and without continuous filament ties to various lateral loads. The loads represented three different scenarios: (1) 100 mph wind, (2) explosive attack, and (3) an earthquake. In addition, a static loading analysis and cost comparison were performed to evaluate optimal materials and designs for the spacers affixed to the filaments. Results showed that polypropylene, ABS, and polyethylene (high density) were suitable materials for the spacers based on performance and cost, and the short T-spacer design was optimal based on its performance and functionality. Results of ... continued below

Physical Description

28 p.

Creation Information

Quinones, Armando (Arquin Corporation, La Luz, NM); Bibeau, Tiffany A. & Ho, Clifford Kuofei June 1, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Finite-element analyses were performed to simulate the response of a hypothetical masonry shear wall with and without continuous filament ties to various lateral loads. The loads represented three different scenarios: (1) 100 mph wind, (2) explosive attack, and (3) an earthquake. In addition, a static loading analysis and cost comparison were performed to evaluate optimal materials and designs for the spacers affixed to the filaments. Results showed that polypropylene, ABS, and polyethylene (high density) were suitable materials for the spacers based on performance and cost, and the short T-spacer design was optimal based on its performance and functionality. Results of the shear-wall loading simulations revealed that simulated walls with the continuous filament ties yielded factors of safety that were at least ten times greater than those without the ties. In the explosive attack simulation (100 psi), the simulated wall without the ties failed (minimum factor of safety was less than one), but the simulated wall with the ties yielded a minimum factor of safety greater than one. Simulations of the walls subject to lateral loads caused by 100 mph winds (0.2 psi) and seismic events with a peak ground acceleration of 1 ''g'' (0.66 psi) yielded no failures with or without the ties. Simulations of wall displacement during the seismic scenarios showed that the wall with the ties resulted in a maximum displacement that was 20% less than the wall without the ties.

Physical Description

28 p.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2006-3750
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/887483 | External Link
  • Office of Scientific & Technical Information Report Number: 887483
  • Archival Resource Key: ark:/67531/metadc886203

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 2006

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 5, 2016, 4:10 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Quinones, Armando (Arquin Corporation, La Luz, NM); Bibeau, Tiffany A. & Ho, Clifford Kuofei. Finite element analyses of continuous filament ties for masonry applications:final report for the Arquin Corporation., report, June 1, 2006; United States. (digital.library.unt.edu/ark:/67531/metadc886203/: accessed August 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.