Stable CSR in storage rings: A model

PDF Version Also Available for Download.

Description

A comprehensive historical view of the work done on coherent synchrotron radiation (CSR) in storage rings is given in reference [1]. Here we want just to point out that even if the issue of CSR in storage rings was already discussed over 50 years ago, it is only recently that a considerable number of observations have been reported. In fact, intense bursts of coherent synchrotron radiation with a stochastic character were measured in the terahertz frequency range, at several synchrotron light source storage rings [2-8]. It has been shown [8-11], that this bursting emission of CSR is associated with a ... continued below

Creation Information

Sannibale, Fernando; Byrd, John M.; Loftsdottir, Agusta; Venturini, Marco; Abo-Bakr, Michael; Feikes, Jorge et al. January 3, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A comprehensive historical view of the work done on coherent synchrotron radiation (CSR) in storage rings is given in reference [1]. Here we want just to point out that even if the issue of CSR in storage rings was already discussed over 50 years ago, it is only recently that a considerable number of observations have been reported. In fact, intense bursts of coherent synchrotron radiation with a stochastic character were measured in the terahertz frequency range, at several synchrotron light source storage rings [2-8]. It has been shown [8-11], that this bursting emission of CSR is associated with a single bunch instability, usually referred as microbunching instability (MBI), driven by the fields of the synchrotron radiation emitted by the bunch itself. Of remarkably different characteristics was the CSR emission observed at BESSY II in Berlin, when the storage ring was tuned into a special low momentum compaction mode [12, 13]. In fact, the emitted radiation was not the quasi-random bursting observed in the other machines, but a powerful and stable flux of broadband CSR in the terahertz range. This was an important result, because it experimentally demonstrated the concrete possibility of constructing a stable broadband source with extremely high power in the terahertz region. Since the publication of the first successful experiment using the ring as a CSR source [14], BESSY II has regular scheduled user s shifts dedicated to CSR experiments. At the present time, several other laboratories are investigating the possibility of a CSR mode of operation [15-17] and a design for a new ring optimized for CSR is at an advanced stage [18]. In what follows, we describe a model that first accounts for the BESSY II observations and then indicates that the special case of BESSY II is actually quite general and typical when relativistic electron storage rings are tuned for short bunches. The model provides a scheme for predicting and optimizing the performance of ring-based CSR sources with a stable broadband photon flux in the terahertz region of up to {approx} 9 orders of magnitude larger than in existing ''conventional'' storage rings. Such a scheme is of interest not only for the design of new sources but also for the evaluation and optimization of the CSR performance in existing electron storage rings. The presented results are mainly based on reference [19].

Source

  • Journal Name: ICFA-Beam Dynamics Newsletter; Journal Volume: 35; Related Information: Journal Publication Date: December2004

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--56777
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 887434
  • Archival Resource Key: ark:/67531/metadc886143

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 3, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 16, 2016, 1:04 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Sannibale, Fernando; Byrd, John M.; Loftsdottir, Agusta; Venturini, Marco; Abo-Bakr, Michael; Feikes, Jorge et al. Stable CSR in storage rings: A model, article, January 3, 2005; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc886143/: accessed December 14, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.