Final Report: Vibrational Dynamics in Photoinduced Electron Transfer

PDF Version Also Available for Download.

Description

The objective of this grant was to understand how molecular vibrational states (geometry distortions) are involved in photoinduced electron transfer rates of molecules. This subject is an important component of understanding how molecular absorbers of light convert that energy into charge separation. This is important because the absorption usually excites molecular vibrations in a new electronic state prior to electron transfer to other molecules or semiconductor nanoparticles, as in some types of solar cells. The speeds of charge separation and charge recombination are key parameters that require experiments such as those in this work to test the rules governing electron ... continued below

Physical Description

51 KB

Creation Information

Spears, Kenneth G. April 19, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The objective of this grant was to understand how molecular vibrational states (geometry distortions) are involved in photoinduced electron transfer rates of molecules. This subject is an important component of understanding how molecular absorbers of light convert that energy into charge separation. This is important because the absorption usually excites molecular vibrations in a new electronic state prior to electron transfer to other molecules or semiconductor nanoparticles, as in some types of solar cells. The speeds of charge separation and charge recombination are key parameters that require experiments such as those in this work to test the rules governing electron transfer rates. Major progress was made on this goal. Some of the molecular structures selected for developing experimental data were bimolecular charge transfer complexes that contained metals of cobalt or vanadium. The experiments used the absorption of an ultrafast pulse of light to directly separate charges onto the two different molecular parts of the complex. The charge recombination then proceeds naturally, and one goal was to measure the speed of this recombination for different types of molecular vibrations. We used picosecond and femtosecond duration pulses with tunable colors at infrared wavelengths to directly observe vibrational states and their different rates of charge recombination (also called electron transfer). We discovered that different contact geometries in the complexes had very different electron transfer rates, and that one geometry had a significant dependence on the amount of vibration in the complex. This is the first and only measurement of such rates, and it allowed us to confirm our interpretation with a number of molecular models and test the sensitivity of electron transfer to vibrational states. This led us to develop a general theory, where we point out how molecular distortions can change the electron transfer rates to be much faster than prior theories predict. This provides a new method to predict electron transfer rates for particular conditions, and it will be important in designing new types of solar cells. A related set of studies were also done to understand how much the environment around the active charge transfer molecules can control the speed of charge transfer. We studied different complexes with femtosecond transient absorption spectroscopy to show that solvent or components of a matrix environment can directly control ultrafast electron transfer when the environmental relaxation time response is on a similar time-scale as the natural electron transfer. Understanding such processes in both liquids and in a matrix is essential for designing new types of solar cells.

Physical Description

51 KB

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/ER/14228-FINAL
  • Grant Number: FG02-91ER14228
  • DOI: 10.2172/881273 | External Link
  • Office of Scientific & Technical Information Report Number: 881273
  • Archival Resource Key: ark:/67531/metadc886111

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 19, 2006

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 7, 2016, 2:07 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Spears, Kenneth G. Final Report: Vibrational Dynamics in Photoinduced Electron Transfer, report, April 19, 2006; United States. (digital.library.unt.edu/ark:/67531/metadc886111/: accessed August 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.