Dual-phase argon ionization detector for measurement of coherent elastic neutrino scattering and medium-energy nuclear recoils

PDF Version Also Available for Download.

Description

We propose to build and deploy a 10-kg dual-phase argon ionization detector for the detection of coherent neutrino-nucleus scattering, which is described by the reaction; (V) + (Z,N) {yields} (v) + (Z,N). Our group would be the first to make this measurement. Its detection would validate (or refute) central tenets of the Standard Model. The existence of this process is also relevant to astrophysics, where coherent neutrino scattering is assumed to impede energy transport within neutron stars. We have built a gas-phase argon ionization detector to determine the feasibility of measuring small recoil energies ({approx}1keV) predicted from coherent neutrino scattering, ... continued below

Physical Description

PDF-file: 1 pages; size: 75.7 Kbytes

Creation Information

Winant, C D; Bernstein, A; Hagmann, C; Madden, N & Stoeffl, W September 13, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We propose to build and deploy a 10-kg dual-phase argon ionization detector for the detection of coherent neutrino-nucleus scattering, which is described by the reaction; (V) + (Z,N) {yields} (v) + (Z,N). Our group would be the first to make this measurement. Its detection would validate (or refute) central tenets of the Standard Model. The existence of this process is also relevant to astrophysics, where coherent neutrino scattering is assumed to impede energy transport within neutron stars. We have built a gas-phase argon ionization detector to determine the feasibility of measuring small recoil energies ({approx}1keV) predicted from coherent neutrino scattering, and to characterize the recoil spectrum of the argon nuclei induced by scattering from medium-energy neutrons. We present calibrations made with 55-Fe, a low energy x-ray source, and describe a planned measurement of the recoil spectra from the 60keV Lithium-target neutron generator at LLNL. A high signal-to-noise measurement of the recoil spectrum will not only serve an important milestone in achieving the sensitivity necessary for measuring coherent neutrino-nucleus scattering, but will break new scientific ground by providing a first ever measurement of low-energy quenching factors in argon. Coherent scattering occurs when the momentum transfer from a neutrino to the nucleus is much smaller than the inverse size of the recoil nucleus. A detection of coherent neutrino-nucleus scattering would verify an unconfirmed Standard Model prediction [1], explore non-standard neutrino-quark interactions, confirm stellar collapse and supernova energy transport and neutrino opacity models, and could be applied to the measurement of the flavor-blind neutrino spectrum from next nearby supernova, or could be used to promote non-intrusive reactor power monitoring [2]. We propose detecting the ionization induced by recoiling argon nuclei using a 10 kg dual-phase argon detector. The principle of dual-phase detection has been described elsewhere [3]. We propose using a 3 GW commercial nuclear reactor as a source of antineutrinos. We have designed and built a gas-phase prototype of the detector with which we have measured the 200-electron equivalent ionization signals from a 6keV Fe-55 source with a signal-to-noise threshold of 50 electrons. This prototype also enables study of scintillation properties of Argon and investigation of electron and nuclear recoils in Argon. We will measure medium energy neutron-nuclear recoils in our prototype detector using the recently-commissioned LLNL compact pulsed neutron source.

Physical Description

PDF-file: 1 pages; size: 75.7 Kbytes

Source

  • Presented at: Neutrino 2006, Santa Fe, NM, United States, Jun 13 - Jun 19, 2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-PROC-224459
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 894782
  • Archival Resource Key: ark:/67531/metadc886069

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 13, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 23, 2016, 4:53 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Enlarge

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Winant, C D; Bernstein, A; Hagmann, C; Madden, N & Stoeffl, W. Dual-phase argon ionization detector for measurement of coherent elastic neutrino scattering and medium-energy nuclear recoils, article, September 13, 2006; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc886069/: accessed September 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.