Characterization of an urban-rural CO2/temperature gradient and associated changes in initial plant productivity during secondary succession.

PDF Version Also Available for Download.

Description

To examine the impact of climate change on vegetative productivity, we exposed fallow agricultural soil to an in situ temperature and CO2 gradient between urban, suburban and rural areas in 2002. Along the gradient, average daytime CO2 concentration increased by 21% and maximum (daytime) and minimum (nighttime) daily temperatures increased by 1.6 and 3.3°C, respectively in an urban relative to a rural location. Consistent location differences in soil temperature were also ascertained. No other consistent differences in meteorological variables (e.g. wind speed, humidity, PAR, tropospheric ozone) as a function of urbanization were documented. The urban-induced environmental changes that were observed ... continued below

Physical Description

454-458

Creation Information

Ziska, Lewis H; Bunce, James A & Goins, Ernie W May 1, 2004.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

To examine the impact of climate change on vegetative productivity, we exposed fallow agricultural soil to an in situ temperature and CO2 gradient between urban, suburban and rural areas in 2002. Along the gradient, average daytime CO2 concentration increased by 21% and maximum (daytime) and minimum (nighttime) daily temperatures increased by 1.6 and 3.3°C, respectively in an urban relative to a rural location. Consistent location differences in soil temperature were also ascertained. No other consistent differences in meteorological variables (e.g. wind speed, humidity, PAR, tropospheric ozone) as a function of urbanization were documented. The urban-induced environmental changes that were observed were consistent with most short-term (~50 year) global change scenarios regarding CO2 concentration and air temperature. Productivity, determined as final above-ground biomass, and maximum plant height were positively affected by daytime and soil temperatures as well as enhanced [CO2], increasing 60 and 115% for the suburban and urban sites, respectively, relative to the rural site. While long-term data are needed, these initial results suggest that urban environments may act as a reasonable surrogate for investigating future climatic change in vegetative communities.

Physical Description

454-458

Source

  • Journal Name: Oecologia; Journal Volume: 139; Journal Issue: 3

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ARIS Log No. 148063
  • Grant Number: AI02-02ER63360
  • DOI: 10.1007/s00442-004-1526-2 | External Link
  • Office of Scientific & Technical Information Report Number: 914566
  • Archival Resource Key: ark:/67531/metadc886044

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 1, 2004

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 4, 2016, 3:33 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Ziska, Lewis H; Bunce, James A & Goins, Ernie W. Characterization of an urban-rural CO2/temperature gradient and associated changes in initial plant productivity during secondary succession., article, May 1, 2004; United States. (digital.library.unt.edu/ark:/67531/metadc886044/: accessed September 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.