The National Ignition Facility (NIF) is a 192 beam Nd-glass laser facility presently under construction at LLNL. When completed, NIF will produce 1.8 MJ, 500 TW of ultraviolet light making it the world's largest and most powerful laser system. NIF will be the world's preeminent facility for performing experiments for Inertial Confinement Fusion (ICF) and High Energy Density Science (HEDS). The Project, begun in 1995, is over 80% complete. The building and the beam path are essentially complete. Nearly all of the functionality of the laser subsystems has been demonstrated. NIF has demonstrated on a single beam basis that it ...
continued below
Publisher Info:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA
Place of Publication:
Livermore, California
Provided By
UNT Libraries Government Documents Department
Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.
Descriptive information to help identify this article.
Follow the links below to find similar items on the Digital Library.
Description
The National Ignition Facility (NIF) is a 192 beam Nd-glass laser facility presently under construction at LLNL. When completed, NIF will produce 1.8 MJ, 500 TW of ultraviolet light making it the world's largest and most powerful laser system. NIF will be the world's preeminent facility for performing experiments for Inertial Confinement Fusion (ICF) and High Energy Density Science (HEDS). The Project, begun in 1995, is over 80% complete. The building and the beam path are essentially complete. Nearly all of the functionality of the laser subsystems has been demonstrated. NIF has demonstrated on a single beam basis that it meets its performance goals and shown the laser's precision and flexibility for pulse shaping, pointing, and timing. Beam conditioning techniques, important for target performance, were also demonstrated. The focal spot can be tailored to user specifications using phase plates. Temporal smoothing using smoothing by spectral dispersion (SSD) as well as polarization smoothing was demonstrated. The remaining work is mostly to complete the optics and install them in the beam path and complete the utilities. Presently, eight beams have been activated through the amplifiers and spatial filters to the switchyard wall. Over 150 kJ of 1 {omega} light has been produced with just 4% of the NIF capacity activated. The Project is scheduled for completion in 2009 and plans have been developed to begin ignition experiments in 2010. This talk will provide NIF status, the plan to complete NIF, and the path to ignition.
This article is part of the following collection of related materials.
Office of Scientific & Technical Information Technical Reports
Reports, articles and other documents harvested from the Office of Scientific and Technical Information.
Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.
Moses, E.Progress on the National Ignition Facility,
article,
September 26, 2005;
Livermore, California.
(digital.library.unt.edu/ark:/67531/metadc885941/:
accessed April 20, 2018),
University of North Texas Libraries, Digital Library, digital.library.unt.edu;
crediting UNT Libraries Government Documents Department.