Correlation of Structure and Function for CO2 Permeation in Polyphosphazene Membranes

PDF Version Also Available for Download.

Description

Thermochemical water splitting processes for generating hydrogen have been researched for at least thirty years in which over one-hundred chemical cycles have been proposed that use heat and/or electrochemistry to split water into hydrogen and oxygen. Proposed heat sources include nuclear reactors and solar reflectors. One of the most promising cycles is the Sulfur-Iodine (S-I) process, where aqueous HI is thermochemically decomposed into H2 and I2 at approximately 350 degrees Celsius. Regeneration of HI is accomplished by the Bunsen reaction (reaction of SO2, water, and iodine to generate H2SO4 and HI). Furthermore, SO2 is regenerated from the decomposition of H2SO4 ... continued below

Creation Information

Stewart, Frederick F. & Orme, Christopher J. October 1, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Thermochemical water splitting processes for generating hydrogen have been researched for at least thirty years in which over one-hundred chemical cycles have been proposed that use heat and/or electrochemistry to split water into hydrogen and oxygen. Proposed heat sources include nuclear reactors and solar reflectors. One of the most promising cycles is the Sulfur-Iodine (S-I) process, where aqueous HI is thermochemically decomposed into H2 and I2 at approximately 350 degrees Celsius. Regeneration of HI is accomplished by the Bunsen reaction (reaction of SO2, water, and iodine to generate H2SO4 and HI). Furthermore, SO2 is regenerated from the decomposition of H2SO4 at 850 degrees Celsius yielding the SO2 as well as O2. Thus, the cycle actually consists of two concurrent oxidation-reduction loops. As HI is regenerated, co-produced H2SO4 must be separated so that each may be decomposed. Current flowsheets employ a large amount (~83 mol% of the entire mixture) of elemental I2 to cause the HI and the H2SO4 to separate into two phases. Removal of water from this system has the direct result of lowering the required quantity of I2, thus reducing the amount of material that must be physically moved within and S-I plant. Recent efforts at the INL have concentrated on applying pervaporation through Nafion-117 membranes for the removal of water from HI/water and HI/Iodine/water feedstreams. In pervaporation, a feed is circulated at low pressure across the upstream side of the membrane, while a vacuum is applied downstream. Selected permeants sorb into the membrane, transport through it, and are vaporized from the backside. Thus, a concentration gradient is established, which provides the driving force for transport. In this work, membrane separations have been performed at temperatures as high as 132 degrees Celsius. Transmembrane fluxes of water are commercially competitive (~200 g/m2h) and separation factors ([HIfeed]/[HIpermeate]) have been measured as high as 500. All membranes studied exhibited no degradation in membrane performance during use.

Subjects

Source

  • Annual AICHE Meeting,Cincinnati, OH,10/30/2005,11/04/2005

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: INL/CON-05-00340
  • Grant Number: DE-AC07-99ID-13727
  • Office of Scientific & Technical Information Report Number: 911746
  • Archival Resource Key: ark:/67531/metadc885904

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 1, 2005

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 7, 2016, 4:02 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Stewart, Frederick F. & Orme, Christopher J. Correlation of Structure and Function for CO2 Permeation in Polyphosphazene Membranes, article, October 1, 2005; [Idaho Falls, Idaho]. (digital.library.unt.edu/ark:/67531/metadc885904/: accessed December 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.