THE ROLE OF DIELECTRIC CONTINUUM MODELS IN ELECTRON TRANSFER: THEORETICAL AND COMPUTATIONAL ASPECTS.

PDF Version Also Available for Download.

Description

Condensed phase physical and chemical processes generally involve interactions covering a wide range of distance scales, from short-range molecular interactions requiring orbital overlap to long-range coulombic interaction between local sites of excess charge (positive or negative monopoles). Intermediate-range distances pertain to higher-order multipolar as well as inductive and dispersion interactions. Efforts to model such condensed phase phenomena typically involve a multi-tiered strategy in which quantum mechanics is employed for full electronic structural characterization of a site of primary interest (e.g., a molecular solute or cluster), while more remote sites are treated at various classical limits (e.g., a molecular force field ... continued below

Physical Description

37 pages

Creation Information

NEWTON, M.D. November 1, 2006.

Context

This book is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this book can be viewed below.

Who

People and organizations associated with either the creation of this book or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this book. Follow the links below to find similar items on the Digital Library.

Description

Condensed phase physical and chemical processes generally involve interactions covering a wide range of distance scales, from short-range molecular interactions requiring orbital overlap to long-range coulombic interaction between local sites of excess charge (positive or negative monopoles). Intermediate-range distances pertain to higher-order multipolar as well as inductive and dispersion interactions. Efforts to model such condensed phase phenomena typically involve a multi-tiered strategy in which quantum mechanics is employed for full electronic structural characterization of a site of primary interest (e.g., a molecular solute or cluster), while more remote sites are treated at various classical limits (e.g., a molecular force field for discrete solvent molecules or a dielectric continuum (DC) model, if the solute is charged or has permanent multipole moments). In particular, DC models have been immensely valuable in modeling chemical reactivity and spectroscopy in media of variable polarity. Simple DC models account qualitatively for many important trends in the solvent dependence of reaction free energies, activation free energies, and optical excitation energies, and many results of semiquantitative or fully quantitative significance in comparison with experiment have been obtained, especially when detailed quantum chemical treatment of the solute is combined self consistently with DC treatment of the solvent (e.g., as in the currently popular PCM (polarized continuum model) approaches).

Physical Description

37 pages

Language

Item Type

Identifier

Unique identifying numbers for this book in the Digital Library or other systems.

  • Report No.: BNL--77280-2006-BC
  • Grant Number: DE-AC02-98CH10886
  • Office of Scientific & Technical Information Report Number: 896730
  • Archival Resource Key: ark:/67531/metadc885816

Collections

This book is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this book?

When

Dates and time periods associated with this book.

Creation Date

  • November 1, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Dec. 12, 2016, 8:21 p.m.

Usage Statistics

When was this book last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Book

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

NEWTON, M.D. THE ROLE OF DIELECTRIC CONTINUUM MODELS IN ELECTRON TRANSFER: THEORETICAL AND COMPUTATIONAL ASPECTS., book, November 1, 2006; [Upton, New York]. (digital.library.unt.edu/ark:/67531/metadc885816/: accessed December 13, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.