Dual Permeability Modeling of Flow in a Fractured Geothermal Reservoir

PDF Version Also Available for Download.

Description

A three dimensional fracture system synthesis and flow simulation has been developed to correlate drawdown characteristics measured in a geothermal well and to provide the basis for an analysis of tracer tests. A new dual permeability approach was developed which incorporates simulations at two levels to better represent a discrete fracture system within computer limitations. The first incorporates a discrete simulation of the largest fractures in the system plus distributed or representative element simulation of the smaller fractures. the second determines the representative element properties by discrete simulation of the smaller fractures. The fracture system was synthesized from acoustic televiewer ... continued below

Physical Description

77-84

Creation Information

Miller, John D. & Allman, David W. January 21, 1986.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A three dimensional fracture system synthesis and flow simulation has been developed to correlate drawdown characteristics measured in a geothermal well and to provide the basis for an analysis of tracer tests. A new dual permeability approach was developed which incorporates simulations at two levels to better represent a discrete fracture system within computer limitations. The first incorporates a discrete simulation of the largest fractures in the system plus distributed or representative element simulation of the smaller fractures. the second determines the representative element properties by discrete simulation of the smaller fractures. The fracture system was synthesized from acoustic televiewer data on the orientation and separation of three distinct fracture sets, together with additional data from the literature. Lognormal and exponential distributions of fracture spacing and radius were studied with the exponential distribution providing more reasonable results. Hydraulic apertures were estimated as a function of distance from the model boundary to a constant head boundary. Mean values of 6.7, 101 and 46 {micro}m were chosen as the most representative values for the three fracture sets. Recommendations are given for the additional fracture characterization needed to reduce the uncertainties in the model.

Physical Description

77-84

Source

  • Proceedings, Eleventh Workshop Geothermal Reservoir Engineering, Stanford University, Stanford, California, January 21-23, 1986

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SGP-TR-93-12
  • Grant Number: AS03-80SF11459
  • Grant Number: AS07-84ID12529
  • Office of Scientific & Technical Information Report Number: 887093
  • Archival Resource Key: ark:/67531/metadc885758

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 21, 1986

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Feb. 16, 2017, 6:17 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Miller, John D. & Allman, David W. Dual Permeability Modeling of Flow in a Fractured Geothermal Reservoir, article, January 21, 1986; Idaho Falls, Idaho. (digital.library.unt.edu/ark:/67531/metadc885758/: accessed December 16, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.