The hydraulic fracturing of geothermal formations

PDF Version Also Available for Download.

Description

Hydraulic fracturing has been attempted in geothermal formations as a means to stimulate both production and injection wells. Since most geothermal formations contain fissures and on occasion massive natural fissures, the production behavior of the man-made fractures results in certain characteristic trends. A model is offered that allows the presence of a finite or infinite conductivity fracture intercepting a fissured medium. The method is based on a numerical discretization of the formation allowing transient interporosity flow. Type curves for pressure drawdown and cumulative production are given for infinite acting and closed reservoirs. Since most of the fissured formations exhibit a ... continued below

Physical Description

199-204

Creation Information

Naceur, K. Ben; Economides, M.J. & Schlumberger, Dowell January 1, 1988.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Hydraulic fracturing has been attempted in geothermal formations as a means to stimulate both production and injection wells. Since most geothermal formations contain fissures and on occasion massive natural fissures, the production behavior of the man-made fractures results in certain characteristic trends. A model is offered that allows the presence of a finite or infinite conductivity fracture intercepting a fissured medium. The method is based on a numerical discretization of the formation allowing transient interporosity flow. Type curves for pressure drawdown and cumulative production are given for infinite acting and closed reservoirs. Since most of the fissured formations exhibit a degree of anisotropy, the effects of the orientation of the hydraulic fracture with respect to the fissure planes, and of the ratio between the directional permeabilities are then discussed. Guidelines are offered as to the size of appropriate stimulation treatments based on the observed fissured behavior of the reservoir.

Physical Description

199-204

Subjects

Source

  • Proceedings, thirteenth workshop on geothermal reservoir engineering, Stanford University, Stanford, CA, January 19-21, 1988

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SGP-TR-113-28
  • Grant Number: AS07-84ID12529
  • Office of Scientific & Technical Information Report Number: 887216
  • Archival Resource Key: ark:/67531/metadc885721

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1988

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Feb. 16, 2017, 8:53 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Naceur, K. Ben; Economides, M.J. & Schlumberger, Dowell. The hydraulic fracturing of geothermal formations, article, January 1, 1988; (digital.library.unt.edu/ark:/67531/metadc885721/: accessed August 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.