Fusion of X-Ray and Ultrasound Images for As-Built Modeling

G. A. Clark, J. A. Jackson

November 14, 2006

Signal and Imaging Sciences Workshop, Center for Advanced Signal and Imaging Sciences
Livermore, CA, United States
November 16, 2006 through November 17, 2006
Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.
Fusion of X-Ray and Ultrasound Images for As-Built Modeling

Grace A. Clark
EE/EETD, Systems and Decision Sciences Section

Jessie A. Jackson
EE/DSED, Signal/Image Processing and Control Group

November 16-17, 2006

This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.
Disclaimer and Auspices Statements

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.
Agenda

• Problem Definition

• Controlled Experiments with a “Phantom” Part

• Registration and Fusion Algorithms

• Experimental Results

• Conclusions
ME Techbase, “Process Development and Implementation of NDE-FEA Coupling for Numerical Analysis”

- Created a RD&T Roadmap for Engineering Centers (CNDC and CCE)
- Multi-modal Sensor Fusion and Flaw Recognition for “As-Built Modeling”
- Processed X-Ray CT and Ultrasonic images from a known “phantom”
As-Built Modeling:
Fabrication Errors Can Sometimes Be Significant

As-Designed

As-Built

Grace A. Clark, Ph.D.
The Literature Contains No Fusion of X-Ray and Ultrasound NDE Imagery

- The medical literature contains some fusion results, but they are not generally useful for NDE:
 - Allowable power levels are much lower for medicine
 - Attenuation effects are much different in medicine
 - Qualitative results (visual inspection) are usually sufficient
 - Fiducial marking is routine in medicine, but often not possible in NDE at LLNL

- Image registration is the “long pole in the tent” for fusing X-ray and Ultrasound NDE Images - Attempts have been unsuccessful
 - There are separate scanning systems for X-ray and Ultrasound, so mechanical registration is impossible
 - Image reconstruction and registration are coupled
 - Scaling the UT image requires ray tracing, event picking, and velocity estimation (as in seismic processing)
 - Difficult to automate
Our Test Part Consists of 3 Concentric Cylinders Made of **Aluminum**, **Cellulose** and **Epoxy**.
CT and UT Measure Different Material Properties. Each Modality Has **Strengths** and **Weaknesses**.

CT (X-Rays)

Measures X-Ray Attenuation

\[A = f[E_A, \rho, Z] \]

where:

- \(E_A \) = Energy Applied
- \(\rho \) = Density
- \(Z \) = Atomic Number (# protons)

Strengths:
- A strong function of \(Z \) (~ \(Z' \))
- High spatial resolution (good for observing part geometry)
- Spatial scaling is automatic

Weaknesses:
- Not very sensitive to changes in density - Not good for detecting closed cracks

UT (Ultrasonics)

Measures reflected acoustic energy

\[R = g[\rho, E] \]

where:

- \(\rho \) = Density
- \(E \) = Modulus of Elasticity

Strengths:
- Good for detecting small changes in density and modulus
- Good for detecting closed cracks

Weaknesses:
- Low spatial resolution due to temporal “ringing” of band-limited ultrasonic transducers
- Spatial scaling is complex, difficult

Grace A. Clark, Ph.D.
Two Image “Slices” Demonstrate the Strengths and Weaknesses of CT and UT

Image Slice 1:
- The aluminum-epoxy interface contrast is strong for both CT and UT

Image Slice 2:
- The aluminum-cellulose and aluminum-epoxy interface contrasts are strong for both CT and UT
- The air-cellulose and air-epoxy interface contrast is strong for both CT and UT
- The epoxy-cellulose interface contrast is: Strong for UT, Weak for CT
The Epoxy-Cellulose Interface Has **Low Contrast With CT**, but **Much Higher Contrast With UT**

The Epoxy - Cellulose Interface:

- Epoxy and Cellulose have approximately the same density and modulus:

 - **Density:** $\rho_{Epoxy} \approx \rho_{Cellulose}$
 - **Coefficient of Elasticity:** (Young’s Modulus) $E_{Epoxy} \approx E_{Cellulose}$
 - **Atomic Number:** $Z^{\text{eff}}_{Epoxy} \approx Z^{\text{eff}}_{Cellulose}$

- UT can detect interfaces well
- CT is minimally effective for interface detection, good for geometry characterization

- The other interface contrasts are strong for both CT and UT
X-Ray Images (Radiographs) are Acquired by Fixing the X-Ray Source and Rotating the Object

Center Axis of Rotation

Object

X-ray source

Radiograph at θ_0

Ensemble (Stack) of Radiographs

Polar Plot or “Sinogram”
Ultrasound Images are Acquired Using a Separate Scanning System: Source is Fixed, Object is Rotated
Ultrasound Images are Acquired in Pulse-Echo Mode, Scanning the Transducer Vertically as the Part is Rotated

Transducer

Object

$$z$$

$$\theta$$

Raw A-scan (Time Waveform)

Amplitude

Time

$$t \propto \text{distance}$$
An Ensemble of Ultrasonic A-Scans Forms a B-Scan

B-Scan Plotted as an Ensemble of Time Waveforms

B-Scan Plotted Using Pixel Intensity

An Ensemble of B-Scans forms a 3D Volume

A view from this plan is called a C-scan
Summary of Horizontal Slice 40: Epoxy and Aluminum

Both CT and UT Show the Epoxy-Al Interface

Sketch

Epoxy-Aluminum Interface is Visible In Both the CT and UT Images

CT

UT

Amplitude

Attenuation

Distance

r

θ

y

x

Eng-03-0051-0 15
Clark-11/10/06, UCRL-CONF-217090
Grace A. Clark, Ph.D.
Summary of Horizontal Slice 20: Epoxy, Cellulose, Air

Cellulose-Epoxy Interface is Visible Only in the UT Image

Cellulose-Epoxy Interface is **NOT** Delineated

Cellulose-Epoxy Interface is Clear

Distance from Center (mm)

Atten. Coeff. Amplitude

y x θ r
Optimal (Desired) Approach to Fusion:

Fully Automatic Processing at All Steps

- **Off-Line Velocity, Density, and Geometry Measurements**
- **Pick Events (Automatically)**
- **Update Velocity Model (Automatically)**
- **Ray Trace (Automatically)**
- **Form UT Image: Polar to Rectangular Coordinate Conversion**
- **Co-Register CT and UT Images (Automatically)**
- **Image Sharpening**
 - Impulse Response Est.
 - Super-Resolution Algs.
Suboptimal Semi-Manual Fusion: Build a “UT Edge Map” and Superimpose it on the CT Image

CT Polar Image

UT Polar Image

Unscaled UT Edge Map

Scaled UT Edge Map

Super-Resolution To Create an Ultrasound “Edge Map”

Manual Scaling - Ray Tracing - Event Picking - Velocity Estimation

Polar-to-Rectangular Conversion

Fused Polar Edge Map

Superimpose

Fused Image

The Epoxy-Cellulose Interface is Now Clearly Delineated
The System Model and Super-Resolution Algorithms Are Summarized in Block Diagrams

System Model

\[x(t) \xrightarrow{\text{System } h(t)} y(t) \xrightarrow{+} n(t) \]

\[x(t) \xrightarrow{h(t)} y(t) \xrightarrow{+} n(t) \]

\[x(t) \xrightarrow{h(t)} y(t) \xrightarrow{+} n(t) \]

\[x(t) \xrightarrow{h(t)} y(t) \xrightarrow{+} n(t) \]

The Ideal Impulse Response is a Series of Delta Functions

Super-Resolution Algorithms

\[x_0(t) \xrightarrow{\text{Pre-Processing}} x(t) \xrightarrow{\text{System Identification (Wiener)}} h(t) \]

\[x_0(t) \xrightarrow{\text{Pre-Processing}} x(t) \xrightarrow{\text{System Identification (Wiener)}} h(t) \]

\[x_0(t) \xrightarrow{\text{Pre-Processing}} x(t) \xrightarrow{\text{System Identification (Wiener)}} h(t) \]

\[x_0(t) \xrightarrow{\text{Pre-Processing}} x(t) \xrightarrow{\text{System Identification (Wiener)}} h(t) \]

\[h_e(t) \]

\[h_e(t) \]

\[h_e(t) \]

\[h_e(t) \]

Estimated Impulse Response

Spectrum Extrapolated Est. of Impulse Response
Super-Resolution Result: Resolution is Enhanced in the Ultrasound Polar Plots of *Slice 20*

- **Original Wiener BSE**
- **Cellulose**
- **Epoxy**
- **Air**

Section B-B‘

Grace A. Clark, Ph.D.
An "Ultrasound Edge Map" Polar Plot is Created from Slice 20 Using the Super-Resolution Results

By Manually Comparing the CT Image and the UT Edge Map, A Spatially Scaled UT Edge Map can be Determined:

(Ray Tracing, Event Picking and Velocity Estimation are Done Manually)

![Diagram showing Epoxy, Cellulose, and Air layers with angles and time relationships]
Fusion: The “UT Edge Map” is Superimposed on the CT Image of **Slice 20** to Show the Cellulose-Epoxy Interface

Slice 20

X-Ray CT Image:
Cellulose-Epoxy Interface is Not Visible

X-Ray CT Image with the “UT Edge Map” Superimposed:
Cellulose-Epoxy Interface is Visible

Grace A. Clark, Ph.D.
Conclusions

• We demonstrated a semi-manual method for fusing X-ray and Ultrasound images
 - Using super-resolution algorithms to build an “edge map”
 - Manually performing ray tracing, even picking, and velocity estimation

• Future work:
 - Automating the registration and fusion processes