Seismic imaging of reservoir flow properties: Time-lapse pressurechanges

PDF Version Also Available for Download.

Description

Time-lapse fluid pressure and saturation estimates are sensitive to reservoir flow properties such as permeability. In fact, given time-lapse estimates of pressure and saturation changes, one may define a linear partial differential equation for permeability variations within the reservoir. The resulting linear inverse problem can be solved quite efficiently using sparse matrix techniques. An application to a set of crosswell saturation and pressure estimates from a CO{sub 2} flood at the Lost Hills field in California demonstrates the utility of this approach. From the crosswell estimates detailed estimates of reservoir permeability are produced. The resulting permeability estimates agree with a ... continued below

Creation Information

Vasco, Don W. April 8, 2003.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Time-lapse fluid pressure and saturation estimates are sensitive to reservoir flow properties such as permeability. In fact, given time-lapse estimates of pressure and saturation changes, one may define a linear partial differential equation for permeability variations within the reservoir. The resulting linear inverse problem can be solved quite efficiently using sparse matrix techniques. An application to a set of crosswell saturation and pressure estimates from a CO{sub 2} flood at the Lost Hills field in California demonstrates the utility of this approach. From the crosswell estimates detailed estimates of reservoir permeability are produced. The resulting permeability estimates agree with a permeability log in an adjacent well and are in accordance with water and CO{sub 2} saturation changes in the interwell region.

Subjects

Source

  • Journal Name: Geophysics; Journal Volume: 69; Journal Issue: 2; Related Information: Journal Publication Date: March/April2004

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--52486
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 900776
  • Archival Resource Key: ark:/67531/metadc885426

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 8, 2003

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Sept. 29, 2016, 6:58 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Vasco, Don W. Seismic imaging of reservoir flow properties: Time-lapse pressurechanges, article, April 8, 2003; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc885426/: accessed August 16, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.