EFFECTIVE ACCURACY OF SATELLITE- DERIVED GLOBAL, DIRECT AND DIFFUSE IRRADIANCE IN THE CENTRAL US

Richard Perez & Marek Kmiecik
ASRC

Antoine Zelenka
MeteoSuisse

Ray George & David Renné
NREL

NREL/PR-550-40032
Disclaimer and Government License

This work has been authored by Midwest Research Institute (MRI) under Contract No. DE-AC36-99GO10337 with the U.S. Department of Energy (the “DOE”). The United States Government (the "Government") retains and the publisher, by accepting the work for publication, acknowledges that the Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for Government purposes.

Neither MRI, the DOE, the Government, nor any other agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe any privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement, recommendation, or favoring by the Government or any agency thereof. The views and opinions of the authors and/or presenters expressed herein do not necessarily state or reflect those of MRI, the DOE, the Government, or any agency thereof.
Short term Effective Accuracy

Perez et al., ASRC

Satellite-derived global irradiance

Measured global irradiance

time/site specific data
Hourly RMS Error as a function of station distance

Satellite becomes more accurate beyond 20 km

Satellite’s Effective Accuracy

Perez et al. ASRC
NE-US / Switzerland Study

- Ground measurement networks not designed for research
- Hourly data only
- Global irradiance only
- Humid / temperate climates
- Marked orographic features
NE-US / Switzerland Study

- Ground measurement networks not designed for research
- Hourly data only
- Global irradiance only
- Humid / temperate climates
- Marked orographic features

SOUTHERN GREAT PLAINS STUDY

- Ground measurement network designed for research (ARM)
- One minute, hourly and daily data
- Global, direct and diffuse irradiances
- Continental climate
- Limited orographic features
ARM Extended Facility

- WMO class I global, direct, diffuse
- 19 out of 26 stations used for analysis
Daily breakeven distance ~ 60 km
Hourly breakeven distance ~ 35 km
1-minute breakeven distance ~ < 5 km
apparent satellite model accuracy

satellite confidence level -- simple model
(accounting for time mismatch and solar geometry)

Relative RMSE (%)

Distance from station (km)

Effective accuracy

Southern Great Plains

Northeastern US

Switzerland
Daily breakeven distance ~ 75 km
Hourly breakeven distance ~ 45 km
1-minute breakeven distance ~ 20 km
Daily breakeven distance ~ 100 km
Hourly breakeven distance ~ 50 km
1-minute breakeven distance ~ 25 km
CONCLUDING REMARKS

Confirmation / extension of initial investigations
Hourly Global effective accuracy ~ 15%
 Direct effective accuracy ~ 25%
 Diffuse effective accuracy ~ 35%

\[\text{Effective accuracy} \]
CONCLUDING REMARKS

Confirmation / extension of initial investigations
Hourly Global effective accuracy ~ 15%
 Direct effective accuracy ~ 25%
 Diffuse effective accuracy ~ 35%

Need to expand study to arid and tropical/subtropical climates