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Abstract 

 
To reduce costs and hazardous wastes associated with the production of lead-based active 
ceramic components, an injection molding process is being investigated to replace the 
current machining process.  Here, lead zirconate titanate (PZT) ceramic particles are 
suspended in a thermoplastic resin and are injected into a mold and allowed to cool.  The 
part is then bisque fired and sintered to complete the densification process. To help design 
this new process we use a finite element model to describe the injection molding of the 
ceramic paste. Flow solutions are obtained using a coupled, finite-element based, Newton-
Raphson numerical method based on the GOMA/ARIA suite of Sandia flow solvers.  The 
evolution of the free surface is solved with an advanced level set algorithm.  This approach 
incorporates novel methods for representing surface tension and wetting forces that affect 
the evolution of the free surface. 
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Thermal, rheological, and wetting properties of the PZT paste are measured for use as 
input to the model.  The viscosity of the PZT is highly dependent both on temperature and 
shear rate. One challenge in modeling the injection process is coming up with appropriate 
constitutive equations that capture relevant phenomenology without being too 
computationally complex.  For this reason we model the material as a Carreau fluid and a 
WLF temperature dependence.  Two-dimensional (2D) modeling is performed to explore 
the effects of the shear in isothermal conditions. Results indicate that very low viscosity 
regions exist near walls and that these results look similar in terms of meniscus shape and 
fill times to a simple Newtonian constitutive equation at the shear-thinned viscosity for the 
paste. These results allow us to pick a representative viscosity to use in fully three-
dimensional (3D) simulation, which because of numerical complexities are restricted to 
using a Newtonian constitutive equation. Further 2D modeling at nonisothermal conditions 
shows that the choice of representative Newtonian viscosity is dependent on the amount of 
heating of the initially room temperature mold.  
 
An early 3D transient model shows that the initial design of the distributor is sub-optimal. 
However, these simulations take several months to run on 4 processors of an HP 
workstation using a preconditioner/solver combination of ILUT/GMRES with fill factors 
of 3 and PSPG stabilization.  Therefore, several modifications to the distributor geometry 
and orientations of the vents and molds have been investigated using much faster 3D 
steady-state simulations.  The pressure distribution for these steady-state calculations is 
examined for three different distributor designs to see if this can indicate which geometry 
has the superior design. The second modification, with a longer distributor, is shown to 
have flatter, more monotonic isobars perpendicular to the flow direction indicating a better 
filling process.   
 
The effects of the distributor modifications, as well as effects of the mold orientation, have 
also been examined with laboratory experiments in which the flow of a viscous Newtonian 
oil entering transparent molds is recorded visually. Here, the flow front is flatter and voids 
are reduced for the second geometry compared to the original geometry. A horizontal 
orientation, as opposed to the planned vertical orientation, results in fewer voids. 
 
Recently, the Navier-Stokes equations have been stabilized with the Dohrman-Bochev 
PSPP stabilization method, allowing us to calculate transient 3D simulations with 
computational times on the order of days instead of months.  Validation simulations are 
performed and compared to the experiments.  Many of the trends of the experiments are 
captured by the level set modeling, though quantitative agreement is lacking mainly due to 
the high value of the gas phase viscosity necessary for numerical stability, though 
physically unrealistic. More correct trends are predicted for the vertical model than the 
horizontal model, which is serendipitous as the actual mold is held in a vertical geometry. 
The full, transient mold filling calculations indicate that the flow front is flatter and voids 
may be reduced for the second geometry compared to the original geometry. 
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The validated model is used to predict mold filling for the actual process with the material 
properties for the PZT paste, the original distributor geometry, and the mold in a vertical 
orientation. This calculation shows that voids may be trapped at the four corners of the 
mold opposite the distributor. 
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1. Introduction 
 
Solid solutions of lead-based perovskites are the backbone materials of the piezoelectric 
components for transducer, actuator, and resonator applications.  These components, 
typically small in size, are fabricated by grinding and lapping from large sintered ceramic 
slugs.  These operations increase manufacturing costs and produce a large hazardous waste 
stream, especially when the component size decreases.  To reduce the cost and hazardous 
wastes associated with the production of these components, injection molding techniques 
are being investigated to replace the machining processes.  Specifically, we are studying 
the injection molding of a paste of lead zirconate titanate (PZT) particles suspended in 
paraffin wax as the basis of a net shape ceramic processing operation. The suspension is 
highly loaded with the ceramic particles, but a stearic acid surfactant and a 
polyethylene/polypropylene copolymer plasticizer are used to improve the processability 
of the material. The paste is injected into the mold creating the green ceramic part with the 
correct net shape. A schematic of the injection molder is given in Figure 1. The injection 
molding process starts with mixing of the solid powder components into a funnel mixer. 
The components are heated and pressurized to become a fluid or soft matter, depending on 
the temperature, at which point they are injected into the mold. Once the part is filled and 
cooled, the gate is broken and the part is ejected. The injection process generally takes less 
than ½ s and turn-around-times between parts are on the order of 5s. The part itself is 
small, with its longest edge length being three cm or so. 

 

 

Figure 1. Schematic of injection molding apparatus. 
 
 
In subsequent processing steps, the wax is burned out of the green part. The part is then 
sintered to create the final ceramic component. This net shape forming process is agile and 
inexpensive, since the final part requires no expensive grinding or retooling, thus reducing 
the waste stream produced. 
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A finite element model of the injection molding system was developed to provide insights 
into the filling process, to allow optimization of the die design and processing variables, 
and to troubleshoot potential problems such as warping, voids, and inhomogeneities.  Such 
issues can be seen in Figure 2, which shows short shots for poorly optimized process 
parameters. Shorts shot are created by partially filling the mold and allowing the material 
to solidify, giving us a window into the injection process. Short shots can be used to 
understand processing parameters and potential filling problems.  

 
 

2.5 mm shot, 40% injection speed 2.5 mm shot, 100% injection speed2.5 mm shot, 40% injection speed 2.5 mm shot, 100% injection speed  

Figure 2. Short shots for poorly optimized process parameters. 
 
From Figure 2, we can see that for low injection speed, e.g. low shear rates, the material 
behaves more like a Bingham plastic than a fluid, creating severe knit line and voids in the 
part. For the higher injection speed, the material behaves more like a fluid and fills the 
mold in a more orderly fashion. 

We obtained flow solutions using a coupled, finite-element based, Newton-Raphson 
numerical method.  The evolution of the free surface was solved with an advanced level set 
algorithm.  This approach incorporates novel methods for representing surface tension and 
wetting forces that affect the evolution of the free surface [Baer et al., 2003].  In addition to 
modeling aspects of the proposed injection molding process, we also performed validation 
calculations. Specifically, we modeled a simple Newtonian fluid being injected at 
relatively low pressures and compared the results to experiments performed with clear 
plastic molds that allowed video taping of the shape and movement of the entering front. 

In the next section we describe the material properties, both thermal and rheological, of the 
ceramic paste.  Next, we describe the computational model and the numerical method, and 
then show preliminary results that led us to improvements in the mold design. The 
following section discusses the validation experiments for the original mold and the two 
new designs suggested by the computational work. Subsequently, we compare the 
validation simulations to the validation experiments and follow this with a section on 
simulations of the real system. We conclude with a summary of the results and ideas for 
future work. 
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2. Material Properties of PZT Ceramic Paste 

2.1 PZT Ceramic Paste Thermal Properties 
The thermal conductivity of the PZT paste was measured by DataPointLabs (Ithaca, NY) 
using a transient line source technique (ASTM D 5930 – 01).  Results are shown in Figure 
3. 

 

Figure 3. Thermal conductivity of PZT paste at various temperatures 
 

The heat capacity and thermal diffusivity were also measured using differential thermal 
analysis and the laser flash technique, respectively.  Thermal conductivity was then 
calculated from thermal diffusivity, density and heat capacity values. The thermal 
conductivity measurements were in good agreement with the transient line source 
technique.  The average heat capacity between 130 and 150oC was 0.62 J/gK. 

2.2 Rheology of the PZT Ceramic Paste 
In order to perform computational simulations, we must first understand the rheology of 
PZT ceramic paste, i.e. how the viscosity changes with temperature and shear rate. One 
challenge in modeling this process is coming up with appropriate constitutive equations 
that capture relevant phenomenology without being too computationally complex. The 
paste is comprised of a highly loaded suspension of ceramic particles, in a polyethylene-
polypropylene copolymer. A stearic acid surfactant is added to improve the processability 
of the composite material. The composition of the paste is given in Table 1 along with the 
density and maximum melting point for each component. The resulting density of the 
composite is 4.5 g/cm3 due to the high density and high particle loading of the PZT. After 
being completely melted and mixed at a temperature above 150°C, the organic carrier 
system started to solidified at 94°C, but shows a phase transition at around 117°C. 
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Table 1. Composition of PZT Ceramic Paste 
Material Density 

(g/cm3) 
Volume % Max. 

Melting 
point (°C) 

paraffin wax 0.90-0.93 25.0 68 

proflow 3000 0.92 20.3 150 

Stearic acid 0.84 2.2 48 

PZT particle 7.97 52.5 N/A 

 

The viscosity of the paste was measured in a capillary viscometer, a schematic of which is 
shown in Figure 4. A temperature controller was used to ensure that isothermal conditions 
are maintained during an experiment.  From the capillary viscometry, it was found that 
above the melting temperature of the composite of about 160°C (this value depends on the 
amount of solid loading and the melting temperature of the polymer matrix), the material 
no longer forms a coherent extrudate but starts to drip and potentially phase separate 
making measurements difficult.  Below the melting temperature, the material must be 
repeatedly sheared in order to get fluid-like behavior as the paste’s behavior is more like 
soft matter than that of a fluid.   
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Figure 4. Capillary viscometer for viscosity measurements. 
 
The raw stress measurements for temperature from 100oC to 135oC are shown in Figure 5 
for a range of shear-rates from 0 to 1000 1/s. A phase change occurs in the paste at 117oC 
showing a change in shape of the stress-shear rate curve. 
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Figure 5. Raw data from capillary rheometer 
 

The rheology of the injection-molded material exhibits shear thinning behavior, therefore, 
the shear rate and viscosity values must be adjusted with the Rabinowitsch correction 
[Ferguson & Kemblowski, 1991], since otherwise we would see 10%-20% errors in the 
value of the viscosity. This is because the capillary viscometer measures an apparent 
viscosity that would only be accurate for Newtonian fluids, not for shear-thinning ones. 
The Rabinowitsch correction was applied, the details of which can be found in Halbleib et 
al [2004]. The corrected viscosities are given in Figure 6 and show shear-thinning in a 
power law manner without much information on the low shear rate plateau. 
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Figure 6. Viscosities after Rabinowitsch correction. Temperatures are given 
in Kelvin. 

 

Because our constitutive equation will be used for computations, we need a model that will 
be well-behaved for the zero shear-rate limit. Power law models are not well-behaved at 
zero shear-rate. For this reason, we decided to use a Carreau-Yasuda model, which is well-
behaved at the zero shear-rate limit, but does require values for the low and high shear-rate 
viscosities. These values are extrapolations, especially the low shear rate viscosity, but 
assuming a good fit to the experimental data of the Carreau-Yasuda parameters, it should 
be a reasonable representation. Here we use a Carreau-Yasuda model with a simple 
Arhennius temperature shift factor. 
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A non-linear least-squares Gauss-Newton method was used to estimate of D, l, a, and n, 
while holding μ0 and μ∞ constant. (This requires an initial guess of parameters to be 
estimated).  Table 2 show results of the fits for a temperature of 403K or 135oC.  A mean 
of residuals closest to 0 indicates the better fit; therefore, we used the parameters listed on 
the first line in Table 2 for the Carreau-Yasuda model in the isothermal 2D computations 
described in the following section.   

14.55-6.13-11.11000.86.060.2352,000

14.61-2.33-7.41000.86.20.2322,000

14.650.206-4.931000.86.280.2302,000

Std Dev 
of 

Residuals

Median of 
Residuals  

Mean of 
Residuals

Dλanμ∞μ0

14.55-6.13-11.11000.86.060.2352,000

14.61-2.33-7.41000.86.20.2322,000

14.650.206-4.931000.86.280.2302,000

Std Dev 
of 

Residuals

Median of 
Residuals  

Mean of 
Residuals

Dλanμ∞μ0

  

Figure 7 shows the fit of the parameters in Table 2 as the high shear-rate viscosity is 
change for 403K and 408K. 
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Figure 7. Plot of fitted viscosity (Pa s) versus the corrected experimental 
viscosities as a function of shear rate, at 403K and 408K. The high shear 
rate viscosities for the fit are varied from 30 Pa s, to 32 Pa s, and 35 Pa s. 

Table 2. Non-linear least-squares fit of Carreau-Yasuda parameters 
to viscometry data at 403K 
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From Figure 7, we can see that fit giving the smallest residual has a high shear-rate 
viscosity of 30 Pa s, and this set of parameters from row 1 of Table 2 fits the data well at 
408. Unfortunately, the high shear rate viscosity of 35 Pa s fits the data better at 403. It is 
very difficult to fit the data for a range of temperatures and shear rates, and the most we 
can hope is to capture the trends from the data with the Carreau model. 

We also tried to fit the rheology to a Carreau model that used the Williams-Landel-Ferry 
(WLF) [Williams et al. 1955] type of shift factors hoping to be able to capture the change 
of shape in the viscosity curves as they undergo a phase transition.  
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Figure 8 shows a fit to the Carreau-WLF model, which was done with an excel spread-
sheet and a visual representation of the fit to the data. The fit emphasizes the high 
temperature data, where it represents the experimental data reasonably well, but does a 
poorer job for lower temperatures. We felt that for the material being injected at a 
temperature of 405K, a good fit to the hot temperature rheology would be more important 
than a good fit to the lower temperature rheology. This may or may not be true depending 
on the boundary conditions used for the simulation, as discussed in the nonisothermal 
modeling section. 

The values for the Carreau-WLF parameters are given in Table 3. 

Table 3.  Carreau-WLF parameter for Non-isothermal Modeling 
 

Carreau-WLF parameter Value 

low shear-rate viscosity, μo 50,000 Poise 

high shear-rate viscosity, μoo 350 Poise 

Power-law coefficient, n 0.32 

Time constant, λ 2.67s 

Scale factor, a 1.915 

WLF parameter, c1 50 

WLF parameter, c2 1600 

WLF reference temperature, Tref 390K 
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Figure 8. Viscosity predicted from Carreau-WLF fit versus thermal 
data for 373K, 393K, 398K, and 408K. The fit favors the higher 
temperatures. 
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3.  Computational Models, Method and Preliminary 
Results 

3.1 Fluid Mechanics Equations and Level Set Theory 
In order to model mold filling of the PZT slurry as it displaces the air in the mold, we need 
to be able to understand both the fluid flow and its interaction with the free surface. To this 
end, we couple the equation of motion with a level set method to determine the location of 
the evolving free surface.  

The equations of motion for the flow of incompressible, viscous Newtonian and non-
Newtonian fluids are as follows. First, we have conservation of momentum 

fgpuu
Dt
Du t ++∇−∇+∇•∇= ρμρ )((   (5) 

and conservation of mass for incompressible fluids with constant density. 

0=•∇ u   (6) 
 

Here u is the fluid velocity, p is the pressure, t is time, g is the gravitational acceleration, 
and f includes all other body force terms. The material properties, density, ρ, and viscosity, 
μ, seen in Equation (5) end up as functions of both the material and the level set equation.  

The level set method of Sethian [1999], a front capturing scheme, is used to determine the 
evolution of the interface with time. The level set is a scalar distance function, the zero of 
which coincides with the free surface or fluid-gas interface, e.g. 

0),,( =zyxφ .  (7) 
We initialize this function to have a zero value at the fluid-gas interface, with negative 
distances residing in the fluid phase and positive distances in the gas phase. An advection 
equation is then used to determine the location of the interface over time. 

0=
Dt
Dφ   (8) 

Derivatives of the level set function can give us surface normals, n, and curvature, H, at the 
interface useful for applying boundary conditions. 

φ
φ

∇•∇=
∇=

H
n

  (9) 

Material properties vary across the phase interface from the properties of the fluid to the 
properties of the displaced gas. This variation is handled using a smooth Heaviside 
function that modulates material properties to account for the change in phase.  

αφαφρρρφρ α <<−−+= ),()()( Hfluidgasfluid   (10) 
αφαφμμμφμ α <<−−+= ),()()( Hfluidgasfluid   (11) 
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This is a diffuse interface implementation of the level set method, which allows for a 
mushy interfacial zone of length 2α, in which the properties will vary from fluid to gas 
values. Note that this method can be applied to both Newtonian and non-Newtonian fluids. 

Surface tension is applied using a continuous surface stress formulation using a smooth 
Dirac delta function that applies this force only at the interface [Jacqmin, 1995]. 
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When using an advection equation to evolve the level set equation over time, difficulties 
arise as to preserving the distance function away from the interface. This is because 
Equation (8) only truly holds at the interface itself and using an advection equation will not 
preserve the distance function away from the interface. For this reason, a Huygens’ 
algorithm is used to periodically redistance the level set function to maintain it as a 
distance function [Sethian, 1999]. 

3.2 Numerical Method 
The equations of motion (5, 6), and the advection equation for the level set, Equation (8) 
are solved with the finite element method. The 2D simulations were done with GOMA 
[Schunk et al., 2006] using a fully-coupled, Newton-Raphson numerical method and an 
LBB element of biquadratic velocity and level set, and bilinear pressure. The discretized 
equations were solved with a direct Gaussian elimination method. 

The 3D simulations were done with ARIA [Notz et al., 2006] using a coupled velocity-
pressure solve, and a decoupled level set equation. The Navier-Stokes equations were 
stabilized with the Dohrman-Bochev pressure stabilized pressure-projection (PSPP) 
[Dohrmann and Bochev, 2004] to allow for equal order, bilinear, interpolation of all 
variables. This stabilization method greatly improved the condition number of the 
discretized matrix equations, allowing for the use of an ILU preconditioner with a 
BiCGStab Krylov iterative solver. This was much more efficient than the previous 
stabilization method used, pressure stabilized Petrov-Galerkin (PSPG) [Droux and Hughes, 
2000], which would allow equal order interpolation, but required a costly ILUT 
preconditioner with up to three levels of fill and a more expensive GMRES iterative solver. 
Because of the improvements of stabilization, using PSPP/ILU/BiCGStab, we ended up 
with computation times on the order of days instead of months for the previous method, 
PSPG/ILUT(3)/GMRES. Scalability was also greatly improved, allowing simulations to be 
run in parallel on 64 processors, giving turn around times of hours. This enabled transient 
design calculations on several meshes to be completed in a day. 

Both the GOMA LBB simulations and the ARIA stabilized simulation showed good mass 
conservation when the constant inflow velocity results for mass as a function of time are 
compared to the analytical solution. 
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3.3 2D Mesh and Boundary Conditions 
For the 2D simulations, we used an axial cross-section of the actual geometry, which could 
represent a 2D slice down the center of the distributor and mold. We did this because we 
wanted to look at nonisothermal and non-Newtonian effects, both of which require fine 
meshes. We felt it was best to begin with 2D simulations and debug the input decks and 
boundary conditions before moving on to 3D simulations. 

The mesh and boundary conditions are given in Figure 9. The mesh contains 2244 9-node 
hexahedral elements with 9321 nodes, resulting in 30380 total degrees of freedom for the 
biquadratic velocity/bilinear pressure LBB element used in combination with biquadratic 
level set interpolation. For nonisothermal simulations, a temperature field was added using 
a bilinear interpolation. In addition, the streamline-upwinding Petrov-Galerkin method 
(SUPG) was used to stabilize the temperature field. 

 

Parabolic 
inflow 
condition

Outflow 
boundary 
(vent)

Wetting 
boundary 
conditions 
at solid 
surfaces

 

Figure 9. FEM mesh and boundary conditions for 2D mold filling. 
 
The boundary condition on the inflow boundary is a constant parabolic inflow velocity for 
both the isothermal Newtonian and Carreau fluid.  

)1( 2
max yvv −=   (15) 

 

This is the exact solution for Poiseuille flow of a Newtonian fluid between two plates and 
only an approximation to the correct form for a Carreau fluid [Bird et al, 1987]. 

The velocity is taken so that the mold fills in about 0.25s, which is comparable to the 
injection time in the real system, though the real system has a constant pressure inflow 
condition so that the velocity will vary throughout the filling process. The outflow 
boundary is open for the venting of the mold filling process. The solid surfaces use wetting 
boundary conditions as follows. We apply no penetration in the normal direction 

0=⋅ vnw     (16) 

and use a Navier slip condition for the tangential velocity. 

fluidslip v
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1
φβ

τ =   (17) 
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Here β, the Navier slip coefficient, varies from a large value near the contact line to a small 
value away from the contact line to enforce no slip away from the interface. 

A linearized Blake model [Blake and Haynes, 1969] enforces the dynamic contact angle 
condition in the interfacial region by applying a force proportional to the difference 
between the static and dynamic contact angles.. 

( ) ( )( ) ( )

( )sw

S
T

wetting

nn
c

θ

φδθθτ α

cos

coscos1

=⋅

−=
  (18) 

 
 
Here θ is the dynamics contact angle, θ s is the static contact angle, and 1/cT is the inverse 
of the wetting speed. 

The density of air at the relevant temperature of 398K is 0.0011g/cm3 and the viscosity is 
2.17x10-4 Poise. Numerically, we use a density of the displace air phase of 0.001 g/cm3 and 
a viscosity of 0.001 Poise, which is roughly ten times higher that the actual value.  

3.4 Results of 2D mold filling -- Isothermal 
2D isothermal mold filling was carried out for a Newtonian fluid and a Carreau fluid. The 
Newtonian solution uses a constant viscosity of 1000 Poise and density of 4.5 g/cm3. The 
Carreau fluid uses the parameters discussed in the first part of section 2.2 and summarized 
in Table 2, ignoring any nonisothermal effects. The filling profiles from the finite 
element/level set solutions for both fluids are given in Figure 10. From this Figure, we can 
see that the shape of the interface is similar for both the Newtonian and shear-thinning 
fluid implying that the wetting physics dominate the shape of the interface. We use the 
same wetting parameters for both simulations. The Carreau fluid simulations show 
viscosities ranging from 20,000 Poise in the center of the plates and at the free surface to 
300 Poise in the narrowest region of the distributor. The average wall viscosity for the 
Carreau fluid ends up being about 390 Poise. The entire range of viscosity is seen for the 
Carreau fluid in the simulations. Once we see the solidification-type behavior at the free 
surface, the material on the free surface no longer flows but moves via a solid-body 
translation. However, this complexity does not seem to have an effect on the shape of the 
free surface. 

The shear-thinning fluid fills slightly faster than Newtonian fluid, mostly because the wall 
of the mold sees a value of 390 Poise for the Carreau fluid while the Newtonian mold wall 
sees a viscosity of 1000 Poise. The 2D simulations for both fluids imply that a bubble 
could be trapped in the corner above the distributor inflow into the mold.  
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Based on the 2D simulations, it was determined that 3D filling simulations using a 
Newtonian model would be enough to troubleshoot the mold design and to provide 
guidance on possible redesigns, as the wetting physics and wall viscosity seem to be the 
dominant parameters affecting the shape of the interface and filling rate. 

 

 

Figure 10. Comparison of Newtonian and highly shear-thinning Carreau 
models for 2D mold filling. The Carreau model viscosity ranges from 
20,000 to 300 Poise. Red values of the viscosity are clipped above 4000 
Poise. 

 
 

3.5 Results of 2D mold filling -- Nonisothermal 
The process is nonisothermal, and the paste has complex, temperature and shear-rate 
dependent rheology as seen in Section 2.2 and summarized in Table 3.  The Carreau model 
with the temperature dependence discussed in Section 2.2 was used here to represent the 
behavior of the viscosity. In our simulations, we assumed that we could ignore the heat 
transfer effects of the steel mold and represent it via boundary conditions. 

The first nonisothermal simulation we performed used an injection temperature of 383K, 
room temperature walls, 298K, and a pressure inflow of 4.0e6 dyne/cm2. This assumes that 
the stainless steel mold stays at room temperature during the injection process by providing 
enough thermal mass compared to the part that temperature variations in the mold can be 
ignored. Since the mold is on the order of a foot and the part is on the order of an inch, this 
is a good assumption small distances away from the part, though the mold will likely heat 
up close to the part. We feel that room temperature wall will give us the highest viscosity 
possible, giving us an upper bound on the wall viscosity. The injection pressure is lower 
than the actual pressure, as it gives a fill time of seconds instead of less than 0.5s as seen 
for the actual process. This was due to the lack of convergence of the numerical method for 
faster injection speeds, probably due to too fast changes in viscosity over time that could 
not be captured by the numerical method. The temperature profiles for this simulation are 
given in Figure 11. 
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Figure 11. Temperature as a function of time for room temperature walls 
and pressure inflow condition. 

 
 
 
From Figure 11, we can see that the hot liquid enters the mold and stays hot for only 
milliseconds. By 0.014s the wall cools the hot liquid and by 0.037s the wall region is at 
room temperature. By 0.22s the material is at room temperature everywhere but at the 
inflow. Figure 12 shows the viscosity at early and late times. 
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Figure 12. Viscosity for early and late times for room temperature walls. 
Viscosity is clipped above 5000 Poise to allow us to see the range of 
viscosity. Temperature and shear rate gradients occur at early time showing 
a range of viscosity. For late times, the fluid becomes isothermal and 
exhibits a constant, high viscosity of roughly 11,000 Poise.  

 
 
 
At early times, we see gradients in the value of viscosity. The viscosity is high at the 
channel walls due to cooling, and high at the center of the channel and at the free surface 
due to low shear rate. At later times, the viscosity takes on a constant value of roughly 
11,000 Poise since the material is mostly isothermal. 

Because of uncertainty in the wall boundary conditions for the temperature equation, we 
also examined a case where a heat transfer coefficient was used to represent the fact that 
the steel mold is initially at room temperature, but then heats up over time. Here the 
boundary condition is: 

)( roomTThq −=   (19). 
 

The value of the heat transfer coefficient was chosen somewhat arbitrarily to be 2.5x107 
erg/cm2 s K. This value is probably low for steel. This simulation uses a parabolic velocity 
inflow condition to yield filling in less than 0.5s. Temperature profiles as a function of 
time are given in Figure 13 for the heat flux boundary condition based on a heat transfer 
coefficient. 
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temperaturetemperature

 

Figure 13. Temperature as a function of time for simulations with thermal 
boundary condition of heat flux based on a heat transfer coefficient at walls. 

 
 
 
 
From Figure 13, we can see that the temperature remains almost isothermal at the high 
inflow value of 405K with only slight cooling near the walls down to a value between 385 
and 390K. Figure 14 shows the resulting viscosity at late times, which shows changes for 
shear-rate at the free surface and at the center of the channel. The value of the viscosity at 
the small channel walls is roughly 620 Poise. 
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Figure 14. Viscosity at late times for heat transfer coefficient based 
boundary condition at wall. Viscosity is clipped above 5000 Poise to allow 
us to see the range of viscosity. 

 
 
The disparity between the results for room temperature walls and the heat flux based on a 
heat transfer coefficient wall boundary conditions led us to believe that the heat transfer at 
the wall needs to be represented better. Because of this, a transient thermal analysis was 
carried out for 0.5s with the paste at an initial temperature of 405K and the stainless steel 
mold at room temperature. In this analysis, the walls of the mold did heat up to about 340K 
and came down to a steady value of 320K. This result is somewhat of a simplification, 
since the mold actually see many heating and cooling cycles, as the green ceramic parts are 
being continuously produced, with injections time of hot paste lasting less than 0.5s, to 
cooling and then ejection after 5s. However, this should be a reasonable temperature value 
for the processing step. For future work, we plan to include the steel mold in the 
nonisothermal simulations coupled with the level set. However, we have used these 
simulations to bracket the viscosity range seen for the real process between 620 Poise and 
11000 Poise. For the 3D simulations of the real process we will use a viscosity of 4000 
Poise, which corresponds to the viscosity at walls of temperature 320K. 

3.6 Initial 3D mesh, boundary conditions, and preliminary results 
The initial 3D mesh and boundary conditions are given in Figure 15 for the isothermal 
mold filling simulations. We assume symmetry about the centerline and only solve half the 
problem to improve the computational efficiency. The mesh contains 6744 8-Node 
hexahedral elements giving 41300 total degrees of freedom for bilinear velocity/bilinear 
pressure interpolation. This non-LBB element requires Petrov-Galerkin Pressure 
stabilization (PSPG) to allow for equal order interpolation and to reduce the condition 
number of the matrix due to the zero on the diagonal for the continuity equation. This 
method adds the residual of the momentum equation weighted with the derivative of the 
pressure shape function to the continuity equation, creating a nonzero diagonal. However, 
this stabilization method can cause problems with mass conservation if large values of the 
PSPG prefactor are used. Thus, only enough stabilization is used to maintain both mass 
conservation and convergence of the iterative solvers. Sadly, this amount of stabilization 
results in a matrix with a large condition number that necessitates ILUT preconditioning 
with fill factors of 3 and a GMRES indirect solver. This leads to long solutions times, on 
the order of months for parallel simulations run on 4 processors of three HP workstations. 
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Figure 15. Initial mesh and boundary conditions for 3D level set 
simulations. The outflow vent is on the same side as the distributor for 
vertical simulations and opposite the distributor for horizontal simulations. 

 
 
For the preliminary 3D simulations, we used the wetting model discussed in Section 3.2 
with a liquid density ρliq of 4.5 g/cm3, a gas density ρgas of 0.0045 g/cm3, an 
incompressible, Newtonian liquid viscosity of μliq of 1000 P and an incompressible gas 
viscosity μgas of 125 P. Since it is a high capillary number flow, surface tension effects 
have been neglected with a numerical value of the surface tension of σ= 1.0 dyne/cm being 
used. Results of the meniscus shape as a function of time from these preliminary 
simulations are given in Figure 16. These simulations assume gravity is perpendicular to 
the flow direction parallel to the symmetry plane, i.e. in a horizontal orientation. 

 

 

Figure 16. Preliminary simulations using PSPG in a horizontal orientation 



 

 
31 

From Figure 16, we can see that the fluid enters the main cavity before completely filling 
the distributor, which then lead to pooling of the fluid in center of the cavity. We also see 
the fluid wets the bottom surface before the top surface and shows some slumping due to 
gravity. These preliminary simulations led us to believe that the shape of the distributor 
could be improved to reduce pooling in the center of the cavity. This work will be 
discussed in the following section.  

3.7 Distributor redesign and steady-state results 
We tried some minor redesigns to the distributor to see if we could improve the flow into 
the mold and reduce pooling in the center of the mold. Ideally, we would like to see a flat 
profile coming out of the distributor and a more one-dimensional front shape. Figure 17 
shows the original mesh, Mesh1, and a variation, Mesh 2, with a longer distributor, and 
Mesh 3 with a longer-taller distributor. The idea behind Mesh 2 was to give a longer length 
for the flow to develop a flat profile and fill up the distributor before entering the main 
cavity. Mesh 3 kept this longer distributor and made it wider on inflow to ease the fluid 
entering the cavity. These ideas were inspired by discussions in Sartor [1990] about die 
design. The meshes themselves all have the same cavity size and a similar amount of 
refinement, though Mesh 2 and Mesh 3 have more elements and unknowns due to the 
longer distributor. 

 
 
 

Mesh 1: Original Geometry Mesh 2: Longer Distributor Mesh 3: Longer-Taller Distributor  

Figure 17. Redesign of the distributor: Mesh 1, Mesh 2, Mesh 3. 
 

Since the transient simulations were taking on the order of weeks or months to run, we 
decided to run steady-state fluid flow without the level set to determine the pressure profile 
as a way to estimate the results that true transient mold filling simulations would give. 
Figures 18-20 show the velocity and pressure fields on a slice plane at the inflow of the 
cavity from the distributor for Mesh 1, Mesh 2 and Mesh 3. The x-y plots of the pressure 
and velocity components are taken at the center of the distributor on the slice plane. Here 
vy is in the flow direction. 
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Figure 18. Steady-state velocity and pressure fields at the inflow of the 
cavity for Mesh 1. 

 
Figure 18 shows that there is a gradient of pressure in the distributor as it opens to the 
cavity with the highest pressure seen at the center of the channel. Ideally, we would like 
the pressure to be flat along the wall. The axial velocity also indicates that pooling will 
occur in the center of the channel since it reaches its maximum at the symmetry plane. 

 



 

 
33 

 

Figure 19. Steady-state velocity and pressure fields at the inflow of the 
cavity for Mesh 2. 

 
The results for Mesh 2 given in Figure 19 show a pressure gradient, but less severe than 
Mesh 1. The pooling of the velocity in the center of the mold is also less pronounced 
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Figure 20. Steady-state velocity and pressure fields at the inflow of the 
cavity for Mesh 3. 

 
 
The results for Mesh 3 shown in Figure 20 show a lower over all pressure, but a pressure 
gradient with its highest value near the symmetry plane. The lower pressure also indicates 
a lower velocity and shear-rate, which may make it difficult to get our real material, a 
shear-thinning ceramic paste into the mold. However, the results for this mesh also look 
better than Mesh 1, though not as good as Mesh 2. From our results, we have concluded 
that a longer distributor, such as that seen in Mesh 2, could improve the injection molding 
process by reducing void size. 
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4. Validation Experiments 
It was decided to visually record the flow of a simple, single phase, Newtonian liquid 
through transparent molds to validate the front tracking and wetting models used in the 
computations. For these tests, we built transparent acrylic molds identical to the three mesh 
geometries.  A fourth geometry was also tested.  In this fourth case, the distributor was 
stretched across the entire mold in the y-direction but was held to the same x- and z-
dimensions as those of Mesh 2.   

The strength of the acrylic material making up the transparent molds dictated that we inject 
at a lower injection pressure and lower operating temperature than the actual process. To 
mimic the actual injection process, we used a pressure driven syringe held at a constant 
pressure of 29.95 ± 0.10 psig during injection. These conditions resulted in an injection 
rate that was approximately ten times slower than the actual process.  We chose a liquid 
with a viscosity that was similar to the PZT paste at the walls where it had shear-thinned to 
a low value. The Reynolds number for the actual process and the validation experiments 
were similar and in the Stokes regime of much smaller than one. The syringe plunger was 
modified with an extra o-ring to minimize air leakage around the seal.  The time to fill the 
molds varied from test to test, but was determined and recorded for each test.   

The liquid used was a lubricant, UCON 75-H-90,000, an oxyethylene/oxypropylene. 
Before this liquid was injected, it was held in a water bath at a constant temperature of 
23.5oC.  The viscosity, surface tension, and wetting properties of the UCON lubricant were 
determined at this temperature.  The viscosity of the lubricant was measured with a 
Rheologica™ constant stress rheometer and was equal to 39 Pa-s over a shear rate ranging 
from 0.1 to 10 sec-1.  The surface tension measured with a Du Noüy ring (mean 
circumference of 5.935 cm) was 42.4±0.1 dyne/cm. The dynamic contact angle on acrylic 
was measured with a feed-through goniometer (Brooks, 2006), in which liquid can be 
continuously injected to achieve “high” velocities, or the sessile drop can be allowed to 
relax to obtain “low” velocities. Figure 21 is a schematic of the experimental apparatus.  
Figure 22 shows the results of these wetting tests.   
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Figure 21. Sketch of apparatus for wetting parameter measurements. 

 

 
Figure 22. Dynamic wetting measurements of contact angle vs. velocity for 
75-H-90000 Ucon on acrylic. 

 

Figures 23 and 24 are representative frames from the video recordings of the fill process 
using a vertical alignment of the mold as in the proposed process.  The time it took to 
completely fill the original geometry (so that liquid beginning to exit along the entire 
length of the vent) was 24.6 ± 1.2 s, to fill the geometry of Mesh 2 was 26.9 ± 2.0 s, and to 
fill the geometry of Mesh 3 was 24.6 ± 2.3 s. Because the fill rates varied, the time is 
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shown in these Figures in a nondimensional form.  The initial time is taken to be when the 
front passes a line in the square entry channel 0.16 cm from the entrance of the distributor. 
Here, one can see the effects of changing the distributor geometry. In Figure 23 the liquid 
has just filled the distributor.  As in the numerical results, all of the modified geometries 
help flatten the leading front, especially Meshes 2 and 4.  Mesh 2 also fills the distributor 
with the fastest relative time.   

 
Figure 23. Comparison of the effect of distributor geometry on the shape of 
the fluid front entering the mold for vertical mold orientation.    

 

Figure 24 shows the times at which the leading front hits the wall opposite the injection 
port.   In this case the front in Mesh 2 takes the longest relative time to reach this stage.  
The other geometries once again follow the same pattern as before, with Mesh 4 closest to 
Mesh 2 and the original mesh the most different from Mesh 2. At this point, the fluid has 
wetted more of the side walls with the Mesh 2 and 4 geometries and the front is flatter. 

 

 
Figure 24. Comparison of the effect of distributor geometry on the time it 
takes to reach the wall farthest from the injection port for vertical mold 
orientation. 

  

Figure 25 shows the locations of the voids remaining in the mold once filled but without 
any over pressure (a relative time of 1).  Small bubbles away from the corners are artifacts 
of the syringe loading process. The voids in geometries with redesigned distributors still 
remain in the same locations as those seen in the original geometry. The relative areas of 
the bubbles on the images, which reflect the volume of air trapped, were determined and 

Mesh 1 
Time/total time=0.32 

Mesh 2 
Time/total time=0.13 

Mesh 3 
Time/total time=0.24 

Mesh 4 
Time/total time=0.23 

Mesh 1 
Time/total time=0.80 

Mesh 2 
Time/total time=0.86 

Mesh 3 
Time/total time=0.82 

Mesh 4 
Time/total time=0.84 
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compared quantitatively in Table 4.  One pixel resolution represents about 1×10-5 cm2.  All 
redesigned distributors result in smaller bubbles in the upper corners than those in the 
original mesh.  The lower bubbles of Mesh 2 are also smaller, whereas those in Mesh 3 are 
approximately the same as those in the original geometry.  

 
Figure 25. Voids remain in the front upper and lower corners of each 
geometry for the vertical mold orientation. 

 
Table 4. Bubble sizes remaining in the corners for vertical mold orientation 

Geometry  Area Upper Corners (cm2) Area Lower Corners (cm2) 

Original 0.0153 ± 0.0012 0.0020 ± 0.0005 

Mesh 2 0.0086 ± 0.0007 0.0012 ± 0.0002 

Mesh 3 0.0128 ± 0.0005 0.0021 ± 0.0001 

Mesh 4 0.0128 ± 0.0001 0.0019 ± 0.0003 

Mesh 1 

Mesh 3 Mesh 4 

Mesh 2 
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Next we experimented with the orientation of the mold.  Molds were turned so that the 
distributor was perpendicular to gravity on the lower surface and the vent was moved to be 
on the upper surface. Results for the original mesh showed that orientation with respect to 
gravity had a large impact on the likelihood of voids remaining in the corners of the mold.  
Figure 26 shows representative video frames at three stages of the fill: 1) when the 
distributor was completely filled, 2) when the front hit the far wall, and 3) when the liquid 
began to exit through the vent and the sides had completely wetted. Because the fill rates 
varied, the time again is shown in a nondimensional form.  The time it took to completely 
fill the original geometry in the horizontal position was 23.3 ± 0.9 s, to fill the geometry of 
Mesh 2 was 28.9 ± 1.5 s, and to fill the geometry of Mesh 3 was 27.3 ± 1.8 s. 

The top views of the horizontal orientation show that the liquid wets the top later than the 
bottom.  The oval area of the middle image in Figure 26A indicates where the liquid has 
wetted the upper surface. The side views are more difficult to interpret because of the 
lighting challenges accompanying trying to see through the thickest section of the mold. 
However, the dark areas of the side view are where the liquid has wetted the sides.  

It is interesting to note that the horizontal alignment causes the front to hit the far wall 
before even wetting the sides at all. In other words the front was less “flat” entering the 
mold from the distributor. Nevertheless, the results also show that the horizontal 
orientation, with the vent on top and the distributor entrance on bottom, resulted in bubbles 
only in the upper corners nearest the distributor.  When oriented vertically, bubbles are 
trapped in corners both opposite the distributor and opposite the vent.  The bubbles nearest 
the distributor with the horizontal orientation are approximately the same size as the 
bubbles trapped in the upper corners opposite the vent in the vertical orientation.  

The effect of distributor geometry on the filling in the horizontal orientation is shown in 
Figures 27 and 28, which correspond to Figures 23 and 24 in the vertical orientation.  Here 
Mesh 4 was not available for comparison. Again the geometry of Mesh 2 results in the 
flattest front entering the mold from the distributor (Figure 27).  The front reaches the back 
wall at approximately the same time using the distributors of Mesh 2 and 3.  By the time 
the front reaches the back wall both modified geometries result in more liquid filling the 
mold than with the original geometry; however, Mesh 2 results in somewhat more than 
Mesh 3 (Figure 28).  
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Figure 26. Original geometry (Mesh 1) oriented horizontally (A) and 
vertically (B).  Images on the left show when the distributor fills 
completely, middle images show when the front first hits the back wall, and 
images on the right show when the part is filled to the point that the fluid 
leaves the vent area through the entire length of the vent. Bubbles left in the 
corners are circled in red. 

 

Mesh 1
Time/total time=0.26

Mesh 2
Time/total time=0.13

Mesh 3
Time/total time=0.22  

Figure 27. Comparison of the effect of distributor geometry on the shape of 
the fluid front entering the mold in a horizontal orientation. 

  

A 

Time/total time=0.26  Time/total time=0.82 Time/total time=1.0 

B 

Time/total time=0.33 Time/total time=1.0 Time/total time=0.81
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Figure 28. Comparison of the effect of distributor geometry on the time it 
takes to reach the wall farthest from the injection port in a horizontal 
orientation. 

 
 
Sizes of the bubbles left in the various geometries in the horizontal orientation are listed in 
Table 5. Comparing these values with the measurements in Table 4, one can see that the 
amount of gas left in the vertical orientation is roughly the same as that in the horizontal 
orientation, although in the horizontal orientation there are fewer bubbles. Bubbles 
observed in other locations than the corners are almost always artifacts of the syringe 
loading process. Only once, a bubble was trapped somewhere in the center of the mold 
because of uneven wetting, and this phenomena was not observed again (Figure 29). 

 

Table 5. Bubble sizes remaining in horizontal orientation 

Geometry Area (cm2) 

Original 0.0189 ± 0.0002

Mesh 2 0.0111 ± 0.0002

Mesh 3 0.0123 ± 0.0017

Mesh 1 
Time/total 
time=0.82 

Mesh 2 
Time/total 
time=0.71 

Mesh 3 
Time/total 
time=0.70 



 

 
42 

 

Figure 29. Uneven wetting of top surface in the horizontal orientation left a 
bubble (circled in red) in this time sequence from A-D.  This was the only 
instance that this was observed. 

 

A B 

C D 
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5. Validation Simulations 
For the validation simulations we use a Blake wetting condition (Blake and Haynes, 1969) 
for the wall velocity in the region of the contact line. 

t
v

vv wall
sowall ∂

∂
−−= τθθγ ))cos(cossinh(   (20) 

The Blake model fit to the dynamic wetting data for UCON oil on acrylic given in Figure 
22 is a wetting speed of 0.0013cm/s and scale factor γ of 2.29 with a static contact angle of 
42.4o. The value of the tangential wall velocity ramps from zero at a level set length scale 
away from the contact line to vwall from Equation (20) at the contact line. Away from the 
contact line we revert to no slip for the tangential wall velocity boundary condition. The 
normal velocity is enforced as no penetration everywhere. The shape of this ramp must be 
smooth in order to get a realistic wetting line that shows a smooth transition from the 
contact line to the bulk flow. For a sharp transition from slip to Blake, we ended up with 
unphysical looking cusps in the interface shape near the wall. The transient terms allows 
smooth movement of the contact line. The τ parameter is taken to be on the order of the 
time step. 

Properties used for the validation simulations were the measured values discussed in the 
experimental section. The density and viscosity of the displaced gas phase were taken as 
fictitious value of 1000 smaller than the liquid phase density and viscosity. These values 
are summarized in Table 6.  

Table 6.  Material properties used for validation simulations 

Material Property Value 

Density of liquid 1.09 g/cm3 

Viscosity of liquid 390 Poise 

Density of gas 0.0011 g/cm3 

Viscosity of gas 0.39 Poise 

Wetting speed, vo 0.0013 cm/s 

Blake scale factor, γ 2.29 

Static contact angle 37.3o 

Surface tension 42.4 dyne/cm 

Inflow pressure 1e6 dyne/cm2 
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At 100oC, the viscosity of air is 2.17x10-4 Poise and the density of air is 0.0012 g/cm3, thus 
our second phase properties are very close for density, but three orders of magnitude too 
high for viscosity. The numerical method fails to converge for values of the liquid/gas 
viscosity ratio of less than 1000 for a diffuse interface implementation of the level set 
equations. 

For the inflow condition, we used a constant inflow pressure of 1.0 e6 dyne/cm2. This 
value was chosen to roughly match the horizontal fill time of 23 seconds in the original 
mesh and then used for all other meshes and geometries. A shooting method was used, 
where different values of the inflow pressure were used and the solution was examined to 
see if it filled in the correct time. This required many simulations to be run. It is believed 
that the actual boundary condition for the experiments is somewhere between a constant 
velocity and constant pressure condition, but this is hard to replicate numerically. From the 
simulations we did find that the velocity changed quickly in the beginning for the pressure 
inflow boundary condition and subsequently reached a steady value. 

The simulations were run using ARIA with PSPP pressure stabilization and the 
BiCGSTAB/ILU solver-preconditioner pair.  This stabilization method has shown good 
scalability and robustness, allowing for a fast Krylov based solver with low levels of 
preconditioning, all of which means quick turn around times for solutions. The validation 
runs were made on 64 processors of Thunderbird and ran in less than 3.5 hours. This was a 
significant breakthrough from the month long calculations necessary for PSPG 
stabilization and allowed us to do real time design and sensitivity calculations for 
parameters such as wetting speed, second phase viscosity, level set length scale and inflow 
pressure. 

The time to fill the mold for the vertical orientation for Mesh 1, Mesh 2, and Mesh 3 are 
15.2s, 17.5s, and 13.2s, which was much faster than the experimental values of 24.6s, 
26.9s, and 24.6s. We defined our fill time as when the vent had filled completely to a 
distant of the level set length scale or two elements. Unfortunately, the numerical fill times 
are difficult to obtain accurately as the gas phase viscosity makes a large difference in how 
fast a simulation will fill for the same value of pressure. For instance, when we reduced the 
second phase viscosity by a factor of 10 we got an increase in the inflow velocity when 
keeping all other parameters constant. So the fact that the gas phase is harder to push out 
than it is for the experiments, adds a great deal of uncertainty to the fill times. However, 
we hope to be able to predict trends. Figure 30 shows the effect of the distributor geometry 
on the meniscus shape for Mesh 1, Mesh 2, and Mesh 3 in a vertical orientation. 
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Mesh 1
Time/total time = 0.42

Mesh 2
Time/total time = 0.18

Mesh 3
Time/total time = 0.24

Mesh 1
Time/total time = 0.42

Mesh 2
Time/total time = 0.18

Mesh 1
Time/total time = 0.42
Mesh 1
Time/total time = 0.42

Mesh 2
Time/total time = 0.18
Mesh 2
Time/total time = 0.18

Mesh 3
Time/total time = 0.24
Mesh 3
Time/total time = 0.24

 
Figure 30. Free surface profile after filling the distributor for Mesh 1, Mesh 
2, and Mesh 3 for vertical mold orientation. 

 

Comparing Figures 30 and 23, the numerical and experimental version of this profile, we 
can see that the simulations are catching the correct trends of the physical situation. The 
original mesh takes the longest fractional time to fill the distributor, 42%, and gives the 
most bulging front shape. Mesh 2 is an improvement, taking 18% of the time to fill the 
distributor, while Mesh 3 is somewhere in between at 24%. The values for the 
experimental distributor dimensionless fill times are 32%, 13%, and 24%, so the 
simulations are also capturing the correct trends for fill time though they are not 
quantitative. The shape of the meniscus for Mesh 1 has more of a bulge at the edge of the 
distributor than the experimental one, which looks as if the front is pinned at the 
distributor. 

We can also look at the profiles and dimensionless time to hit the back wall. These results 
are given in Figure 31. 
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Mesh 2
Time/total time = 0.70

Mesh 1
Time/total time = .60

Mesh 3
Time/total time = 0.55

Mesh 2
Time/total time = 0.70
Mesh 2
Time/total time = 0.70

Mesh 1
Time/total time = .60
Mesh 1
Time/total time = .60

Mesh 3
Time/total time = 0.55
Mesh 3
Time/total time = 0.55  

Figure 31. Free surface profile after hitting the back wall for Mesh 1, Mesh 
2, and Mesh 3 for vertical mold orientation 

 

Comparing Figure 31 to Figure 24, for the simulation versus experiment, we can see 
difference in the meniscus shape. The numerical interface reaches the back wall for Mesh 1 
and Mesh 3, before it wets the side wall and Mesh 2 has a flatter profile in the experiments 
than the simulations. The percentage time to reach the back wall for the simulations on 
Mesh 1, Mesh 2, and Mesh 3 are 60%, 70%, and 55% compared to 80%, 86% and 82% for 
the experiments. Again, we are capturing the correct trends, but are still unable to match 
quantitatively. 

Figure 32 shows the full meniscus shape and void locations for the simulations on Mesh 1, 
Mesh 2, and Mesh 3. 
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Mesh 1
Time/total time = 1.0

Mesh 3
Time/total time = 1.0

Mesh 2
Time/total time = 1.0

Mesh 1
Time/total time = 1.0
Mesh 1
Time/total time = 1.0

Mesh 3
Time/total time = 1.0
Mesh 3
Time/total time = 1.0

Mesh 2
Time/total time = 1.0
Mesh 2
Time/total time = 1.0

 
Figure 32. Final void location and front profile for Mesh 1, Mesh 2, and 
Mesh 3. 

 

The void in the corner near the distributor does eventually fill in, since its size is less than 
the level set length scale and we are using a diffuse interface method. The larger void at the 
vent area never fills in as the viscous gas phase gets trapped away from the vent by the 
paste. For the numerical solutions it is hard to make any predictions about void size, 
though we can say that for similar values of the dimensionless time the voids for Mesh 2 
will be smaller than Mesh 1, with Mesh 3 being somewhere in between, which does follow 
the experimental trend. 

We also examined the horizontal orientation numerical, which gave fill times for Mesh 1, 
Mesh 2, and Mesh 3 of 21.4s, 23.1s, and 22.2s compared to 23.3s, 28.9s, and 27.3s for the 
experiments. Again, we follow the trends of the experiment, but do not match 
quantitatively. Mesh 2 seems to take a longer time to fill for the experiment than one 
would predict numerically. Figure 33 shows a comparison of the profiles for Mesh 1 in a 
vertical and horizontal orientation. 
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Mesh 1
Time/total time = .41

Mesh1
Time/total time = .29

Mesh 1
Time/total time = 1.0

Mesh 1
Time/total time = 0.42

Mesh 1
Time/total time = 0.60

Mesh 1
Time/total time = 1.0

A

B

Mesh 1
Time/total time = .41

Mesh1
Time/total time = .29

Mesh 1
Time/total time = 1.0

Mesh 1
Time/total time = .41
Mesh 1
Time/total time = .41

Mesh1
Time/total time = .29
Mesh1
Time/total time = .29

Mesh 1
Time/total time = 1.0
Mesh 1
Time/total time = 1.0

Mesh 1
Time/total time = 0.42

Mesh 1
Time/total time = 0.60

Mesh 1
Time/total time = 1.0

Mesh 1
Time/total time = 0.42
Mesh 1
Time/total time = 0.42

Mesh 1
Time/total time = 0.60
Mesh 1
Time/total time = 0.60

Mesh 1
Time/total time = 1.0
Mesh 1
Time/total time = 1.0

A

B

 
Figure 33. Mesh 1 oriented horizontally (A) and vertically (B). Leftmost 
pictures show profiles when the distributor is filled, middle shows profile 
when the fluid hits the back wall, and rightmost pictures show final profile. 
Both front and side views are given to highlight void location. 

 

Comparing Figure 33 to the experimental equivalent, Figure 26, we can see that we have 
quantitative differences but do match some trends. The numerical meniscus shape leaving 
the distributor looks similar to the experimental profile as it bulges more in the center for 
the horizontal orientation, though the simulation is less dramatic. The numerical profiles 
when the fluid first hits the back wall are flatter for the vertical orientation than the 
horizontal, though the vertical should be even flatter to match the data. The numerical 
solutions predict two voids for each orientation, though the experiments do not show a 
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second void for the horizontal orientation near the vent, though this void may just be 
difficult to see experimentally. Or conversely, the horizontal void at the outflow may be an 
artifact of the numerical method as we have a difficult balance at the outflow between 
wetting forces, gravity, the gas phase viscosity, and the material flowing out the vent. Also, 
our numerical vent is not the same size as the experimental one. 

Figure 34 shows the meniscus profiles for Mesh1, Mesh 2, and Mesh 3 after filling the 
distributor for the horizontal orientation. 

Mesh 1
Time/total time = .29

Mesh 2
Time/total time = .15

Mesh 3
Time/total time = .21

Mesh 1
Time/total time = .29
Mesh 1
Time/total time = .29

Mesh 2
Time/total time = .15
Mesh 2
Time/total time = .15

Mesh 3
Time/total time = .21
Mesh 3
Time/total time = .21

 
Figure 34. Free surface profile after filling the distributor for Mesh 1, Mesh 
2, and Mesh 3 for horizontal mold orientation. 

 
 
Comparing Figures 34 and 27, the numerical and experimental version of this profile, we 
can see that the simulations are catching the some of the correct trends of the physical 
situation. Mesh 1 shows the most pooling at the center of the mold, Mesh 2 has a flatter 
profile as does Mesh 3. The experiments predict Mesh 3 to be in between Mesh 1 and 
Mesh 2, and the simulations also follow this trend. The dimensionless times to fill the 
distributor numerically for Mesh 1, Mesh 2, and Mesh 3 are 29%, 15%, and 21% compared 
to 26%, 13% and 22% for the experiments. In general, the simulations predict the vertical 
filling to be faster overall than the horizontal by several seconds for each of the geometries, 
whereas the experiments are faster in the vertical for Mesh 2 and 3, but slower for Mesh 1. 
This could have resulted from some experimental errors. 

Figure 35 shows the free surface profile as the fluid hits the back wall for Mesh 1, Mesh 2, 
and Mesh 3 in the horizontal orientation. The dimensionless times it takes to hit the back 
wall for Mesh 1, Mesh 2, and Mesh 3 are 41%, 55%, and 52% compared to values of 82%, 
71%, and 70% for the experiments seen in Figure 28. 
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Mesh 1
Time/total time = .41

Mesh 2
Time/total time = .55

Mesh 3
Time/total time = .52

Mesh 1
Time/total time = .41
Mesh 1
Time/total time = .41

Mesh 2
Time/total time = .55
Mesh 2
Time/total time = .55

Mesh 3
Time/total time = .52
Mesh 3
Time/total time = .52  

Figure 35. Free surface profile after hitting the back wall for Mesh 1, Mesh 
2, and Mesh 3 for horizontal mold orientation. 

 

For the simulations, Mesh 1 hits the back wall for the smallest dimensionless time while 
Mesh 2 and Mesh 3 take about the same time. For the experiments, Mesh 1 takes the 
longest time, while Mesh 2 and Mesh 3 do take about the same time. So for this case, we 
are capturing one trend, but not the differences between Mesh 1 and Mesh 2. 

Table 7 summarized the fill times to reach the distributor, back wall, and complete fullness 
for the simulations and experiments for vertical and horizontal orientations on all three 
meshes.  

Table 7. Summary of fill times for experiment and simulations to reach the 
distributor, the wall and completely full 

Mesh Orientation Expt. 
Fill 
Time -
Full 

Expt. 
% 
Time -
Dist 

Expt. 
% 
Time -
Wall 

Sim. 
Fill 
Time-
Full 

Sim. 
% 
Time -
Dist 

Sim. % 
Time -
Wall 

Mesh 1 Vertical 24.6s 32% 80% 15.2s 42% 60% 

Mesh 2 Vertical 26.9s 13% 86% 17.5s 18% 70% 

Mesh 3 Vertical 24.6s 24% 82% 13.2s 24% 55% 

Mesh 1 Horizontal 23.3s 26% 82% 21.4s 29% 41% 

Mesh 2 Horizontal 28.9s 13% 71% 23.1s 15% 55% 

Mesh 3 Horizontal 27.3s 22% 71% 15.6s 21% 52% 
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From Table 7 we can see that we capture some of the correct trends, especially for the 
vertical orientation, though some features elude us like the time to fill to the back wall for 
Mesh 1 in the horizontal orientation. Future work we will include both more careful 
experiments as well as use of advanced features in ARIA to allow for smaller values of the 
gas phase viscosity, such as sharp integration and XFEM that were available in GOMA for 
2D, when such features are available in 3D. These advanced features have allowed us to 
run problems where the gas phase could even be ignored, such as in a vacuum. 

Our validation exercise gave us enough confidence in our simulations to undertake 
numerical solutions for the actual material properties and orientation. The predictions were 
more accurate for the vertical orientation, and the actual process has the mold in the 
vertical orientation. Simulations for the paste are discussed in the next section. 
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6. Results for PZT paste 
We did numerical simulations using the actual property values for the PZT paste, but with 
a Newtonian viscosity chosen from the nonisothermal, non-Newtonian simulations 
discussed in section 3.2. The properties used are summarized in Table 8. 

 
Table 8. Material properties used for PZT paste simulations 

Material Property Value 

Density of liquid 4.5 g/cm3 

Viscosity of liquid 4000 Poise 

Density of gas 0.0045 g/cm3 

Viscosity of gas 4.0 Poise 

Wetting speed, vo 1.0 cm/s 

Blake scale factor, γ 2.29 

Static contact angle 40o 

Surface tension 42.4 dyne/cm 

 
 
Again the values of the gas properties are fictitious and used to maintain numerical 
stability. The numerical method fails for viscosity ratios between the liquid and gas of 
greater than 1000. The real ratio between the liquid phase and the air is on the order of 
1.e7. The wetting properties for the PZT paste have not been measured, so we use values 
similar to the UCON oil for these properties except with a faster wetting speed of 1.0cm/s, 
since the PZT fill the mold in less than 0.5s. For the PZT paste simulations we use a 
constant velocity boundary condition of 190cm/s at the inflow. 

The results for the real material are given in Figure 36 for Mesh 1 in the vertical 
orientation. 
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Mesh 1
Time/total time = .29

Mesh 1
Time/total time = .53

Mesh 1
Time/total time = 1.0

Mesh 1
Time/total time = .29
Mesh 1
Time/total time = .29

Mesh 1
Time/total time = .53
Mesh 1
Time/total time = .53

Mesh 1
Time/total time = 1.0
Mesh 1
Time/total time = 1.0  

Figure 36. Meniscus shape as a function of time for real PZT properties on 
Mesh 1 in vertical orientation. 

 
 
From Figure 36, we can see that once the fluid fills the distributor it has just barely started 
to wet the front wall. The material then hits the back wall without touching the side walls, 
perhaps due to the high viscosity of the gas phase making wetting the side walls difficult. 
The final free surface profile again shows voids located at the outer corners of the mold 
near the distributor and near the vent. 

We ran the PZT paste simulation on the refined version of Mesh 1 shown in Figure 37. 
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Figure 37. Refined version of Mesh 1 

 
 
 
The results on the refined mesh are given in Figure 38 for the profiles to fill the distributor 
and hit the back wall. The simulation failed a Newton step before the mold was completely 
filled, a problem which cannot currently be recovered from in ARIA, so the final profile is 
given instead. 
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Mesh 1 - refined
Time/total time = .24

Mesh 1- refined
Time/total time = .59

Mesh 1 - refined
Time/total time = .71

Mesh 1 - refined
Time/total time = .24
Mesh 1 - refined
Time/total time = .24

Mesh 1- refined
Time/total time = .59
Mesh 1- refined
Time/total time = .59

Mesh 1 - refined
Time/total time = .71
Mesh 1 - refined
Time/total time = .71  

Figure 38. Meniscus shape as a function of time for real PZT properties on a 
refined version of Mesh 1 in vertical orientation. Simulation failed to 
converge before the mold was filled. The last time value was 0.12s. We 
assume that the mold would have filled in 0.17s as the unrefined version 
did. 

 

The refined mesh profiles look very similar to the unrefined mesh ones and occur at similar 
dimensionless times, giving us hope that our unrefined mesh results are convergent and 
meaningful. It is unfortunate that the simulation failed on the refined mesh, as it would be 
interesting to examine the solution as it hits the side wall and reached the outflow and to 
compare the void location and size to the unrefined mesh. 
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7. Conclusions and Future Work 
In this report, we have investigated the injection molding of a PZT ceramic paste using 
experiments and simulations. Capillary rheometry has been used to characterize the paste, 
whose behavior ranged from solid below 94oC, to soft matter from 94-150oC, and fluid 
about 160oC. These data were then fit to a Carreau model that takes into account both 
shear-thinning and temperature changes. No constitutive model can hope to fit the range of 
behavior, but the Carreau model will capture the correct trends with temperature and shear 
rate. The isothermal version of the Carreau fluid was used in 2D finite element-level set 
simulations to examine the shape of the free surface with time. These results were 
compared to Newtonian simulations for a viscosity similar to the wall viscosity of the 
Carreau fluid and it was determined that both fluids gave similar free surface shapes, thus 
for 3D we could simplify things and run Newtonian simulations and still predict the correct 
free surface shape. Nonisothermal 2D Carreau fluid simulations were carried out to 
determine what viscosity should be used for the 3D Newtonian simulations. This value 
depended heavily on what type of wall boundary conditions were used, either room 
temperature walls or applying a heat flux based on a heat transfer coefficient. The results 
form these two boundary conditions varied greatly from predicting that the fluid cooled off 
at early times to the room temperature or the fluid stayed as hot as the inflow temperature. 
A thermal analysis was carried out that implied the wall temperature would be hotter than 
room temperature, more like 320K. For the thermal and level set simulations, it was 
decided that the wall viscosity would be roughly 4000 Poise. 

In the 3D world, initial transient simulations suggested that the fluid pooled in the center of 
the mold and would potentially leave voids. These simulations were enlightening, but took 
several months to run on 4 processors of a HP workstation using a preconditioner /solver 
combination of ILUT/GMRES with fill factors of 3 and PSPG stabilization. We explored 
possible redesign of the distributor using faster 3D steady-state simulations. The pressure 
and velocity profiles from these simulations led us to believe that a longer distributor 
length would allow for a flatter, more monotonic meniscus shape on entering the cavity. 
We also investigated a longer distributor that also had a larger entrance into the cavity of 
the mold; this redesign was also an improvement over the initial mesh. 3D transient 
simulations did verify the conclusion from the steady-state simulations.  

Validation experiments were carried out on the three different distributor designs using a 
UCON lubricant, which is a Newtonian fluid. It was found that the new designs were an 
improvement over the initial design in that they showed flatter meniscus shapes as they 
entered the mold and left smaller voids in the vertical orientation. Experiments also 
investigated Mesh 1, Mesh 2, and Mesh 3 in a horizontal geometry. It was found that the 
horizontal orientation seemed to eliminate the void near the vent, though the amount of 
trapped gas was roughly the same in both the vertical and horizontal orientations. 

Validation simulations were carried out to closely follow the experiments. The simulations 
did capture many of the experimental trends, though quantitative agreement was lacking. 
We feel that the lack of agreement between the experiment and simulation probably stems 
from several factors, including the diffuse interface, the high value for the gas phase 
viscosity, and the wetting parameters. For future work, we plan to investigate using an 
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XFEM level set method that allows for sharp integration of the interface and discontinuous 
values of pressure and velocity at the interface, which will then accommodate higher ratios 
of the fluid to gas viscosity. We also plan to undertake a wetting study in a simplified 
geometry to allow us to test our wetting model without requiring massively parallel 
computations. 

Each simulation took 4 hours to run on 64 processors of Thunderbird using ILU/BiCGStab 
and PSPP stabilization. This speed up allowed us to run sensitivity studies for parameters 
such as geometry, orientation, wetting speed, and inflow pressure, which would have been 
previously impossible with our 3 month turn around times. Other improvements in the 
numerical method have allowed us to look at fluid to gas viscosity ratios of 1000 to 1, 
when previously the best we could do was 10 to 1, though even higher ratios will be 
necessary for predictive simulations. 

The simulations using the paste properties, with the Newtonian material model, led us to 
believe that two voids would be trapped for the original mesh in a vertical orientation. A 
refined mesh confirmed the results from the original mesh, though the simulation failed 
when the paste came near the side wall. From the simulations and experiments, we believe 
a redesign of the mesh with a longer distributor would be an improvement over the current 
design.  
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