An accurate PVT model for geothermal fluids as represented by H{sub 2}O-CO{sub 2}-NaCl mixtures

PDF Version Also Available for Download.

Description

Estimates for the pressure decline in high TDS geothermal fluids containing dissolved gases are extremely sensitive to the PVT representation of the reservoir fluid. Significant errors in predicted pressures will occur if the geothermal fluid is represented by one or two pseudo components with modified water properties. As a result, we have developed a PVT model to predict the thermodynamic properties of a prototype geothermal fluid as represented by three-component H{sub 2}O-CO{sub 2}-NaCl mixtures. The range of applicability of the model is: Temperatures from 75 to 700+ F, pressures from 14.7 to 5000 psi, carbon dioxide content from 0-5 wt%, ... continued below

Physical Description

239-248

Creation Information

Andersen, G.; Probst, A.; Murray, L. & Butler, S. January 1, 1992.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 13 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Estimates for the pressure decline in high TDS geothermal fluids containing dissolved gases are extremely sensitive to the PVT representation of the reservoir fluid. Significant errors in predicted pressures will occur if the geothermal fluid is represented by one or two pseudo components with modified water properties. As a result, we have developed a PVT model to predict the thermodynamic properties of a prototype geothermal fluid as represented by three-component H{sub 2}O-CO{sub 2}-NaCl mixtures. The range of applicability of the model is: Temperatures from 75 to 700+ F, pressures from 14.7 to 5000 psi, carbon dioxide content from 0-5 wt%, and salt concentrations to 30 wt%. The model has been implemented into Unocal's version of a commercially available reservoir simulator and is currently being used to study one of Unocal's high salinity reservoirs located in the Imperial Valley of California.

Physical Description

239-248

Source

  • Seventeenth Workshop on Geothermal Reservoir Engineering: Proceedings, Stanford University, Stanford, CA, January 29-31, 1992

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SGP-TR-141-35
  • Grant Number: None
  • Office of Scientific & Technical Information Report Number: 888733
  • Archival Resource Key: ark:/67531/metadc885359

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1992

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 2, 2016, 7:05 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 13

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Andersen, G.; Probst, A.; Murray, L. & Butler, S. An accurate PVT model for geothermal fluids as represented by H{sub 2}O-CO{sub 2}-NaCl mixtures, article, January 1, 1992; United States. (digital.library.unt.edu/ark:/67531/metadc885359/: accessed August 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.