Mass Eigenstate Composition of 8B Solar Neutrinos

Hiroshi Nunokawa1, Stephen Parke2 and Renata Zukanovich Funchal3

1 Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, C. P. 38071, 22452-970, Rio de Janeiro, Brazil: email: nunokawa@fis.puc-rio.br

2Theoretical Physics Department, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510, USA: email: parke@fnal.gov

3Instituto de Física, Universidade de São Paulo, C. P. 66.318, 05315-970 São Paulo, Brazil: email: zukanov@if.usp.br

Abstract. 91±2% of 8Boronsolar neutrinos observed by SNO are ν_2 mass eigenstates.

Around the MSW “triangle”, where $\langle P(\nu_e \rightarrow \nu_e) \rangle = 0.35$, the composition of 8Boronsolar neutrinos is either 65% or 100% ν_2 except at the top and bottom right hand corners of this triangle. Nature’s choice for the solar oscillation parameters is at the top right hand corner, the LMA corner, where the fraction of ν_2 is 91±2%, see Fig. 1. Details of this two flavor calculation can be found in [1] using the analytical formulation of [2] and the global solar analysis of SNO, [3]. For non-vanishing θ_{13}, the ν_2 fraction is reduced by $\sin^2\theta_{13}$, see Ref. [1].

Figure 1. Left panel: The mass eigenstate composition of 8Boron solar neutrinos in $\delta m^2 \nu \sin^2 \theta_\odot$ plane showing the MSW triangle (red) dotted line. Middle panel: Focusing in on the current allowed region. Right panel: The normalized 8Boron spectrum broken into its ν_1 and ν_2 components both unweighted, left, and weighted, right, by the charge current cross section using a 5.5 MeV threshold on the kinetic energy of the recoil electron and the best fit point for the solar oscillation parameters given in [3]. These weighted mass eigenstate fractions are the fractions that SNO is sensitive to. All panels of this figure are for vanishing $\sin^2 \theta_{13}$.

1 Poster presented at “XXII International Conference on Neutrino Physics and Astrophysics,” June 13-19, 2006; Santa Fe, NM, USA.