Super-Resolution Algorithms

for Nondestructive Evaluation Imaging

Grace A. Clark (EE/EETD)
Jessie A. Jackson (EE/DSED)
Steven E. Benson (ME/MMED)

November 17-18, 2005

This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.
Disclaimer and Auspices Statements

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.
Go Boilers!!!

Purdue’s “All-American” Marching Band
Agenda

• Problem Definition:
 - Ultrasonic NDE measurements
 - The spatial resolution problem

• Impulse Response Estimation for Enhancing Spatial Resolution
 - Mitigate “ringing” due to the transducer and propagation paths

• Bandlimited Spectrum Extrapolation for Super-Resolution

• Examples of Processing Results
Ultrasonic Pulse-Echo Signals (A-Scans) Are Distorted By the Transducer and the Propagation Paths ("Ringing")

The Ideal Reflection Is An Impulse Sequence

Time \propto Distance
Ultrasonic Pulses Are *Bandlimited* by the Transducer

==>

The Pulses “*Ring*”, Reducing Spatial Resolution

\[y(t) = \text{Reflected Pulse} \]

Front Reflection:

Flaw Reflection:

Back Reflection:

\[|Y(f)|^2 = \text{DFT of the Reflected Pulse} \]
We Define Ultrasonic A, B, and C-Scans Used in Nondestructive Evaluation (NDE) Studies:

A-Scan $x(t)$
(A Single Waveform)

B-Scan
(Family of A-Scans)

C-Scan
(Horizontal Slice At Depth z: Use A Time Gate)

3D Volume
(Family of B-Scans)

$Time \propto Distance$
The Reference Scatterer is Chosen to Provide the Transducer / Path Response in the Absence of a Flaw

Desired properties of the reference scatterer:
• Reflects back most of the energy
• Resembles some feature associated with the flaw environment

Reference Signal
\[x(t) \]
\[y(t) \]

Front or Back Surface Reference

Corner Reflector Reference
We Use a Reference Scatterer to Help Remove Distortion: Conceptually, This is a “System Identification” Problem

Experiment to Measure the Scattered Signal \(Y(f) \)

\[
G(f) \xrightarrow{\text{Sending Transducer}} TF(f) \xrightarrow{\text{Forward Propagation Path (Beam Spreading)}} PF(f) \xrightarrow{\text{Scattering From Flaw}} H(f) \xrightarrow{\text{Return Propagation Path (Spherical Spreading)}} PR(f) \xrightarrow{\text{Receiving Transducer}} Y(f)
\]

Experiment to Measure the Reference Signal \(X(f) \)

\[
G(f) \xrightarrow{\text{Sending Transducer}} TF(f) \xrightarrow{\text{Forward Propagation Path (Beam Spreading)}} PF(f) \xrightarrow{\text{Reference Scatterer}} HR(f) \approx 1 \xrightarrow{\text{Return Propagation Path (Spherical Spreading)}} PR(f) \xrightarrow{\text{Receiving Transducer}} X(f)
\]

Conceptually:

\[
\frac{Y(f)}{X(f)} = \frac{TF(f)PF(f)H(f)PR(f)TR(f)}{TF(f)PF(f)(1)PR(f)TR(f)} \approx H(f) \xrightarrow{F^{-1}} h(t)
\]
System Identification: Estimate the Impulse Response $\hat{h}(t)$

Given: $x(t)$ and $u(t)$ Estimate: $\hat{h}(t)$

$$e(t) = u(t) - \hat{u}(t)$$
The Inverse Problem Is Very Difficult

We Must Regularize the Problem

- Ill-Posed
 (Infinite Number of possible solutions)
- Bandlimited Transducer Spectral Response
- Ill-Conditioned - Numerical Errors Due to Spectral Zeros
The **System Model** and **Processing Algorithms** Are Summarized in Block Diagrams

System Model

\[x(t) \rightarrow \text{System } h(t) \rightarrow y(t) \rightarrow u(t) \]

\[n(t) \]

\[h(t) \rightarrow \text{Front} \rightarrow \text{Flaw} \rightarrow \text{Back} \]

The Ideal Impulse Response is a Series of Delta Functions

Processing Algorithms

\[x_0(t) \rightarrow \text{Pre-Processing} \rightarrow x(t) \rightarrow \text{System Identification (Wiener)} \rightarrow \hat{h}(t) \rightarrow \text{Band-Limited Spectrum Extrapolation} \rightarrow \hat{h}_e(t) \]

\[u_0(t) \rightarrow u(t) \]

Estimated Impulse Response

Spectrum Extrapolated Est. of Impulse Response

Grace Clark, Ph.D.
Our Objective is to Improve Temporal Resolution by **Extrapolating Spectra**

- The transducer bandlimits our signals
 - System identification solutions are not unique
 - System identification solutions are valid only in a finite frequency interval \([f_1, f_2]\).
 They give us the optimal least squares solution, given the bandwidth of the transducer.
 - We can never obtain narrow impulses in the time domain

- We wish to extrapolate spectra beyond \([f_1, f_2]\).
 - This can allow us to obtain better approximations to impulses in the time domain.

- We propose to extrapolate the spectra of:
 \[u(t) \quad \text{The measured pulse-echo signal} \]
 \[\hat{h}(t) \quad \text{The estimated impulse response} \]
We Use *Bandlimited Spectrum Extrapolation* To Improve *Spatial Resolution*

<table>
<thead>
<tr>
<th>Ideal</th>
<th>Measured or Estimated</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h(t)$ Ideal Impulse Response</td>
<td>$\hat{h}(t)$ Estimated Impulse Response</td>
</tr>
<tr>
<td>$</td>
<td>H(f)</td>
</tr>
</tbody>
</table>

We Trust Measured or Estimated Spectrum on the Region f_1 to f_2.
Complex Variable Theory Gives Us a Solid Theoretical Basis for Spectrum Extrapolation

- Our temporal signals have \textit{bounded support}:
 - They are transient (finite length) signals in the time domain

- The Fourier Transform of a signal with bounded support is \textit{ANALYTIC} (continuous, all derivatives exist).

- If any analytic function in the complex plane is known exactly in an arbitrarily small (but finite) region of that plane, then the \textit{entire function} can be found \textit{(uniquely)} by \textit{ANALYTIC CONTINUATION}.

\[\hat{H}(f) \]

Region We Trust

\[f_1 \quad f_2 \quad f \]
Analytic Continuation Algorithms are Hypersensitive to Noise - *Must Regularize*

- Prior knowledge can be used as constraints to regularize the problem

- Iterative algorithms (*method of successive approximations*) are slow, not unique, but can incorporate constraints.

- Non-iterative algorithms are faster, but can’t usually incorporate constraints.

- Often, it is not necessary to determine the inverse of the distortion operator
 - Good for nonlinear or time-varying operators
We Use an Iterative Algorithm for Regularized Analytic Continuation

• Estimate the impulse response at the next iteration as a function F of the impulse response at the last iteration:

$$h_{k+1}(t) = Fh_k(t), \quad \text{for } k = 0, 1, 2, \ldots$$

• Iterate between the time and frequency domains

 \textit{(Method of Alternating Orthogonal Projections)}

• Convergence is proved using contraction mapping theorems from functional analysis

• Use an \textit{“adaptive algorithm”} that assumes the impulse response to be a sequence of impulses - \textit{constrain the time domain signal to be an impulse train}:

$$
\begin{align*}
 h(t) &= \sum c_i \delta(t - t_i) \\
 u(t) &= \sum c_i x(t - t_i) + n(t)
\end{align*}
$$

\[\text{Ideal Impulse Response} \]
We Constrain the Temporal and Spectral Support Using Projection Operators

Temporal Projection Operator

\[d(t) \]

\[-T \quad 0 \quad T \]

Spectral Projection Operators

\[P_T(f) = \text{Envelope}\left\{ \frac{|X(f)|}{\max|X(f)|} \right\} \]

\[P_T(f) = \text{Envelope}(X(f)) \]

\[P_R(f) \]

\[-f_2 \quad -f_1 \quad 0 \quad f_1 \quad f_2 \]
ith Iteration of the Spectrum Extrapolation Algorithm:
Alternating Orthogonal Projections, w/Adaptive Algorithm

\[n = \text{Time Index} = -(N/2-1), \cdots, -2, -1, 0, 1, 2, \cdots, N/2-1 \]

\[k = \text{Frequency Index} = -(N/2-1), \cdots, -2, -1, 0, 1, 2, \cdots, N/2-1 \]

\[P(k) = (-k_1, -k_2) \cup (k_1, k_2) \]

\[d(n) = [-T, T] \]
We Constructed a “Phantom” Part - *Aluminum Block* Containing *Flat-Bottom Holes*
We Can Combine CAD Models With 3-D Data To Clarify Ultrasonic Evaluation Results

3-D Ultrasonic Data Det

3-D data and CAD Model-Solid

3-D data and CAD Model-Lines
Processing Results Show Great \textit{Reduction of Ringing}, and \textit{Enhancement of Range Resolution}

The Measured Pulse-Echo Signal Contains Transducer \textit{Ringing}, Which Limits Resolution

The \textit{Estimated Impulse Response} Shows the Optimal Ringing Reduction Possible, Using the Band-Limited Transducer Spectrum

The \textit{Spectrum-Extrapolated Impulse Response Estimate} Allows \textit{Super-Resolution} Because We Now Have a Broader Effective Signal Spectrum
System Identification and Spectrum Extrapolation Results Are Summarized for the Flat-Bottom Hole Phantom Signals

Original Wiener BSE

Amplitude

Time

Time
The Processed 3D Volume Shows Greatly-Enhanced Spatial Resolution (System ID Only)

Raw 3D Volume

Processed 3D Volume (System ID Only)
Ultrasonic Pulse-Echo Signals Are Distorted by the Transducer and the Propagation Paths
Ultrasonic Pulse-Echo Signals Are Distorted by the Transducer and the Propagation Paths

Welds Are Scanned for Penetration Thickness

Example: W79 Weld

W79 Weld Signals

Raw Signal

Estimated Impulse Response

Bandwidth-Extrapolated Impulse Response

Time (Proportional to Distance)