Potential Impact of Reservoir Engineering R&D on Geothermal Energy Costs

PDF Version Also Available for Download.

Description

A tutorial program for use on personal computers is being developed to evaluate the sensitivity of geothermal energy costs to potential technological improvements. Reservoir engineering R&D will reduce risk to the funding organization and in turn reduce the risk premium paid on a loan. The use of a risk premium was described as an investment banker’s option at the November 1986 “Future of Geothermal Energy Conference” in San Diego, California. In the sensitivity analysis, we propose to calculate an energy cost: (1) at the predicted production parameters of temperature, drawdown rate, etc., and (2) at the most likely worse case ... continued below

Physical Description

21-22

Creation Information

Traeger, Richard K. & Entingh, Daniel January 20, 1987.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A tutorial program for use on personal computers is being developed to evaluate the sensitivity of geothermal energy costs to potential technological improvements. Reservoir engineering R&D will reduce risk to the funding organization and in turn reduce the risk premium paid on a loan. The use of a risk premium was described as an investment banker’s option at the November 1986 “Future of Geothermal Energy Conference” in San Diego, California. In the sensitivity analysis, we propose to calculate an energy cost: (1) at the predicted production parameters of temperature, drawdown rate, etc., and (2) at the most likely worse case values. The differential higher cost of the worse case over the predicted case is the risk premium. Thus R&D that improves reservoir definition will reduce the worse-case-minus-predicted-case difference and the financial risk premium. Improvements in reservoir engineering can then be quantified in terms of reduced energy costs. This paper will discuss the proposed approach to obtain critique of the procedure and provide the best logic for use in evaluating the potential impact of reservoir engineering R&D.

Physical Description

21-22

Subjects

Source

  • Proceedings, Twelfth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, Calif., January 20-22, 1987

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SGP-TR-109-4
  • Grant Number: AT03-80SF11459
  • Grant Number: AS07-84ID12529
  • Office of Scientific & Technical Information Report Number: 888492
  • Archival Resource Key: ark:/67531/metadc885158

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 20, 1987

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 30, 2016, 5:04 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Traeger, Richard K. & Entingh, Daniel. Potential Impact of Reservoir Engineering R&D on Geothermal Energy Costs, article, January 20, 1987; United States. (digital.library.unt.edu/ark:/67531/metadc885158/: accessed August 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.