The long term observed effect of air and water injection into a fracture hydrothermal system

PDF Version Also Available for Download.

Description

Injection of atmospheric air mixed with waste reinjection liquid, has been occurring since 1982 at the Los Azufres, Mexico volcanic hydrothermal system. Several chemical and thermodynamical evidences show that air injection into this fractured geothermal field, could be considered as a long term natural tracer test. Nitrogen and Argon separated from the air mixture migrate from reinjection wells to production zones following preferential paths closely related to high permeability conduits. These paths can be detected, looking into the N2 solubility evolution of production wells. The anisotropic nature of the fractured volcanic rock, would demand considerably amounts of artificial tracer in ... continued below

Physical Description

45-48

Creation Information

Arriaga, Mario Cesar Suarez; Lopez, Mirna Tello; Rio, Luis de & Puente, Hector Gutierrez January 1, 1992.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Injection of atmospheric air mixed with waste reinjection liquid, has been occurring since 1982 at the Los Azufres, Mexico volcanic hydrothermal system. Several chemical and thermodynamical evidences show that air injection into this fractured geothermal field, could be considered as a long term natural tracer test. Nitrogen and Argon separated from the air mixture migrate from reinjection wells to production zones following preferential paths closely related to high permeability conduits. These paths can be detected, looking into the N2 solubility evolution of production wells. The anisotropic nature of the fractured volcanic rock, would demand considerably amounts of artificial tracer in order to be detected at the producing wells, specially when fluid extraction is low. This explains the unsuccessful recovery of the artificial tracer tests performed in past years at Tejamaniles, the southern field's sector. On the other hand, chloride concentrations and other salts, are increasing in the liquid produced by the oldest wells of the sector.

Physical Description

45-48

Source

  • Seventeenth Workshop on Geothermal Reservoir Engineering: Proceedings, Stanford University, Stanford, CA, January 29-31, 1992

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SGP-TR-141-8
  • Grant Number: None
  • Office of Scientific & Technical Information Report Number: 888652
  • Archival Resource Key: ark:/67531/metadc885035

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1992

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • March 23, 2018, 2:30 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Arriaga, Mario Cesar Suarez; Lopez, Mirna Tello; Rio, Luis de & Puente, Hector Gutierrez. The long term observed effect of air and water injection into a fracture hydrothermal system, article, January 1, 1992; Morelia, Mexico. (digital.library.unt.edu/ark:/67531/metadc885035/: accessed June 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.