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1. Introduction 

During reinjection of cooled geothermal fluid into a reservoir, 
chemical precipitation and other processes may occur changing the permea- 
bility of the aquifer. 
both of time and space. This will, of course, affect the injection well. 
Some attempts? have been made to analytically predict the pressure res- 
ponse. The present paper describes our calculations which yield analytic 
expressions, in terms of a single integral, for a wide class of physically 
reasonable permeability functions. Results are presented for a few typi- 
cal examples. 

In general, the permeability becomes a function 

2. Governing Equations 

Consider an aquifer consisting of a horizontal slab of thickness, h, 
penetrated normally by a line source supplying a flow Q. 
medium is taken to be isotropic. In our simplified model we neglect gra- 
vity, 
fluid phase. The governing equation is then given by 

The aquifer 

consider the system to be isothermal, and consider only a single 

1 - if we assume that Byp pp << - a *  Kyp. Here Bo = compressibility, u Z 
viscosity. ($I porosity,are taten constant", and K F permeability, p Z 
pressure. 

Given a permeability function of space and time, (1) yields the 
pressure distribution that results. The present work solved equation (1) 
for a large class of physically reasonable permeability function. In 
particular, we look for a family of constant K surfaces in space-time 
which may be physically reasonable. Let ro be the distance from the 
line source to the fluid front. Since the volume of fluid pumped into 
aquifer equals the volume of aquifer occupied, we see that the fluid 
front propagates to 

ro(t) = Ct1'2 

where C is a constant. Thus if r is the distance of any point in the 

* The same analysis can bc easily adapted to the case where 1.1 is not 
a constant, but that K/p is in the form of the permeability functions 
described below. 

unpublished. 
i' For example, A .  Sklar, Lawrence Livermore Laboratory Annual Report (1977) 
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aquifer to the source, then points with r2/t < C2 will have permeability 
KO0 and if r2/t > C2 they will have permeability K,. 
value of the ratio r2/t will have the same permeability. We shall solve 
equation (1) first for permeabilities of the form, 

Points with the same 

K(r,t) = KO B(r2/t) (2) 

where r is the cylindrical radial coordinate, and 6 is an arbitrary func- 
tion. We shall then extend the class of solutions to those of the more 
general permeability function 

where a is an arbitrary positive function of t. 

3 .  Solution - 

To make equation (1) dimensionless, units are chosen so that Bo@ = 1, 
p = 1, and l i m i t  K(g,t) K, = 1 then dimensionless quantities are: 

r ->o 

Thus (1) becomes 

% = ,  at - . B V P  ( 4 )  

- If we look at the solutions where p is a function of r only, p(x,t) = 
p(r,t). Then 

r 
z E r2/t , and apply the separation of -> t w - t  

Next we change variables 
variables , 

-- 
p(r,t) = P(z,w) = @(w)x(z) 

On substitution, we find $(w) = 1 and x satisfies 

which is really a first order differentia1,equation for ax/az. 

It remains only to integrate the equation and impose the remaining 
boundary conditions, which are 
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p ( r , o )  = p0 p (m ' , t )  = Po 

aP l i m i t  2 n r h K ( r , t )  - - 
r ->o ar - -Q 

-Q limit 2 m h K ( r , t )  -- ap = 
ar - 

t + m  

I n  terms of  t h e  v a r i a b l e  z ,  t h e s e  boundary cond i t ions  correspond to  

Thus t h e  s o l u t i o n  of (6)  a f t e r  p u t t i n g  i n  u n i t s  is ,  

F i n a l l y ,  we o b t a i n  t h e  s o l u t i o n s  €or the  m o r e  general pe rmeab i l i t y  
( 3 )  from those  s o l u t i o n s  a l r e a d y  obta ined .  The method depends on a p rope r ty  
of t h e  d i f f e r e n t i a l  equat ion  

and does no t  depend on t h e  s p e c i f i c  form of  K o t h e r  than  i t s  being a 
func t ion  of r and t on ly  ( e .g . ,  t h e  same method could be used t o  gene ra t e  
new s o l u t i o n s  i f  [8] i s  i n i t i a l l y  solved f o r  o t h e r  forms of K ) .  

To g e t  t h e  new s o l u t i o n s  assume t h a t  ( 8 )  has  been so lved  f o r  f ,  
wi th  a given K. Then cons ide r  t h e  transformed func t ion  

f m ( r , t )  5 f r ,  ~ ( t ' )  dt ' ]  [ Lt 
where a i s  an a r b i t r a r y  p o s i t i v e  func t ion .  fa does n o t  s a t i s f y  ( 8 )  s i n c e  

Rather f a  s a t i s f i e s ,  

where K , ( r , t )  C ( t )  K k , / t m ( t i ) d t t ]  

Furthermore,  t h e  boundary cond i t ions  on f a  and f are t h e  same so t h a t  if 
p i s  t h e  p r e s s u r e  response due t o  K,  then  t o  f i n d  t h e  p re s su re  a t  t h e  

0 
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point (r,t) 'when the permeability is K,, we just evaluate p at the point 
(r,'I) where 

I4 

4 .  Results 

We have calculated the pressure distributions resulting from the 
following permeability functions 

- 

- 6  
K3 = exp [-p/(z+E)] , p = 10 E = 4P/3 

0.1 0.2 0 . 3  0 
R/K (rn/v'ZY) 

0 d c y  

I doy 

I 1 I I I I 1 I 

0.2 0.4 0.6 0.8 
A C i t e r d  

For comparison permeabilities K1 - K 3  
are graphed v s .  r / 6  in Figure l*. 

The constant permeability KO 
leads to the Theis Solution which 
is graphed in Figure 2. 
3-5 give graphs of K1 - K3 
the corresponding calculated pres- 
sure distributions. 

Figures 
and 

5. Summarv 

We have obtained an analytical 
solution for the pressure response 
in a reservoir with permeability of 
the form K = K(r2/t). It has been 
found that these solutions may be, 
used to generate additional solutions 
€or 

- 
* In this Figure, the para- 
meters in K3 are p = 1.85 x 
and E = (4/3)p. Hence, at Z=O 

all the permeability functions 
K1 to K4 have the value 0.25K0. 

I 
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S e v e r a l  f u n c t i o n  forms for  K ( r 2 / t )  
have been s t u d i e d  and t h e  r e s u l t i n g  
p r e s s u r e  d i s t r i b u t i o n s  c a l c u l a t e d .  

A g e n e r a l  method f o r  g e n e r a t i n g  
t h e  p r e s s u r e  r e s p o n s e  5 €or a permea- 
b i l i t y  

w a s  deve loped ,  once  t h e  s o l u t i o n  p ( r , t )  
is p r e v i o u s l y  found ( a n a l y t i c a l l y  o r  
n u m e r i c a l l y )  f o r  a p e r m e a b i l i t y  f u n c t i o n  
K ( r , t ) .  The s o l u t i o n  f o r  K ( r , t )  i s  

The o n l y  r e s t r i c t i o n  on a i s  t h a t  it be 
positive. 

'-O- 
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