An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry

PDF Version Also Available for Download.

Description

As the US seeks to develop an energy strategy that reduces the reliance on foreign oil, there is a renewed interest in the research and development of the Fischer Tropsch synthesis for converting syngas into long chain hydrocarbon products. This report investigates some of the basic elementary steps for Fischer-Tropsch synthesis over ideal Pt, Ru and carbon-covered Pt and Ru metal surfaces by using ab initio density functional theoretical calculations. We examine in detail the adsorption sites as well as the binding energies for C, CH, CH{sub 2}, CH3 and CH4 on Pt(111), Ru(0001), 2x2-C-Pt(111) and 2x2-C-Ru(0001). The results indicate ... continued below

Creation Information

Neurock, Matthew & Chopra, Siddharth September 11, 2003.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

As the US seeks to develop an energy strategy that reduces the reliance on foreign oil, there is a renewed interest in the research and development of the Fischer Tropsch synthesis for converting syngas into long chain hydrocarbon products. This report investigates some of the basic elementary steps for Fischer-Tropsch synthesis over ideal Pt, Ru and carbon-covered Pt and Ru metal surfaces by using ab initio density functional theoretical calculations. We examine in detail the adsorption sites as well as the binding energies for C, CH, CH{sub 2}, CH3 and CH4 on Pt(111), Ru(0001), 2x2-C-Pt(111) and 2x2-C-Ru(0001). The results indicate that the binding energies increase with decreasing the hydrogen in the fragment molecule, i.e. CH{sub 4} < CH{sub 3} < CH{sub 2} < CH < C. More specifically the work analyzes the elementary steps involved in the activation of methane. This is simply the reverse set of steps necessary for the hydrogenation of C to CH{sub 4}. The results indicate that these hydrocarbon intermediates bind more strongly to Ru than Pt. The introduction of co-adsorbed carbon atoms onto both Ru(0001) as well as Pt(111) significantly increased the overall energies as well as the activation barriers for C-H bond activation. The results suggest that Ru may be so active that it initially can initially activate CH4 into CH or C but ultimately it dies because the CH and C intermediates poison the surface and thus kill its activity. Methane can dissociate on Pt but subsequent hydrocarbon coupling reactions act to remove the surface carbon.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: None
  • Grant Number: FG26-01NT41275
  • DOI: 10.2172/909654 | External Link
  • Office of Scientific & Technical Information Report Number: 909654
  • Archival Resource Key: ark:/67531/metadc884976

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 11, 2003

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 22, 2016, 2:09 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Neurock, Matthew & Chopra, Siddharth. An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry, report, September 11, 2003; United States. (digital.library.unt.edu/ark:/67531/metadc884976/: accessed December 13, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.