Structural interpretation of the Kakkonda deep geothermal reservoir

PDF Version Also Available for Download.

Description

The Kakkonda geothermal field is known as a unique field such that a new reservoir was found at about 2500 m in depth after the shallow reservoir ranging from 1000 m to 1500 m had been produced for about eight years. The shallow reservoir is composed of sedimentary rock with igneous rock intrusions, while the deep reservoir is a fractured thin zone located at the top of a large granite intrusion. Between the two, there exist thermally metamorphosed zones. This study aims at integrated interpretation of the top structural surface of the deep reservoir. The data used include well data, ... continued below

Physical Description

67-72

Creation Information

Kobayashi, Osamu; Arihara, Norio & Hanano, Mineyuki January 24, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The Kakkonda geothermal field is known as a unique field such that a new reservoir was found at about 2500 m in depth after the shallow reservoir ranging from 1000 m to 1500 m had been produced for about eight years. The shallow reservoir is composed of sedimentary rock with igneous rock intrusions, while the deep reservoir is a fractured thin zone located at the top of a large granite intrusion. Between the two, there exist thermally metamorphosed zones. This study aims at integrated interpretation of the top structural surface of the deep reservoir. The data used include well data, microearthquakes, and several metamorphic minerals. Microearthquakes, which are continuously observed at surface, reflect the structural surface of the granite intrusion of the deep reservoir. The metamorphic minerals such as biotite and cordierite caused by strong heat conduction out of the granite also give an image of the structure. Based on the spacings of acoustic emission data, images of the structural surface are extracted statistically. The degree of uncertainty is evaluated. The isograds of the metamorphic mineral distributions are reproduced by a regional heat conduction model.

Physical Description

67-72

Subjects

Source

  • Proceedings, Twenty-First Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, January 22-24, 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SGP-TR-151-10
  • Grant Number: None
  • Office of Scientific & Technical Information Report Number: 889713
  • Archival Resource Key: ark:/67531/metadc884946

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 24, 1996

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 2, 2016, 12:50 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Kobayashi, Osamu; Arihara, Norio & Hanano, Mineyuki. Structural interpretation of the Kakkonda deep geothermal reservoir, article, January 24, 1996; United States. (digital.library.unt.edu/ark:/67531/metadc884946/: accessed August 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.