An evaluation of the active fracture concept with modelingunsaturated flow and transport in a fractured meter-sized block ofrock

PDF Version Also Available for Download.

Description

Numerical simulation is an effective and economical tool for optimally designing laboratory experiments and deriving practical experimental conditions. We executed a detailed numerical simulation study to examine the active fracture concept (AFC, Liu et al., 1998) using a cubic meter-sized block model. The numerical simulations for this study were performed by applying various experimental conditions, including different bottom flow boundaries, varying injection rates, and different fracture-matrix interaction (by increasing absolute matrix permeability at the fracture matrix boundary) for a larger fracture interaction under transient or balanced-state flow regimes. Two conceptual block models were developed based on different numerical approaches: a ... continued below

Creation Information

Seol, Yongkoo; Kneafsey, Timothy J. & Ito, Kazumasa May 30, 2003.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Numerical simulation is an effective and economical tool for optimally designing laboratory experiments and deriving practical experimental conditions. We executed a detailed numerical simulation study to examine the active fracture concept (AFC, Liu et al., 1998) using a cubic meter-sized block model. The numerical simulations for this study were performed by applying various experimental conditions, including different bottom flow boundaries, varying injection rates, and different fracture-matrix interaction (by increasing absolute matrix permeability at the fracture matrix boundary) for a larger fracture interaction under transient or balanced-state flow regimes. Two conceptual block models were developed based on different numerical approaches: a two-dimensional discrete-fracture-network model (DFNM) and a one-dimensional dual continuum model (DCM). The DFNM was used as a surrogate for a natural block to produce synthetic breakthrough curves of water and tracer concentration under transient or balanced-state conditions. The DCM is the approach typically used for the Yucca Mountain Project because of its computational efficiency. The AFC was incorporated into the DCM to capture heterogeneous flow patterns that occur in unsaturated fractured rocks. The simulation results from the DCM were compared with the results from the DFNM to determine whether the DCM could predict the water flow and tracer transport observed in the DFNM at the scale of the experiment. It was found that implementing the AFC in the DCM improved the prediction of unsaturated flow and that the flow and transport experiments with low injection rates in the DFNM were compared better with the AFC implemented DCM at the meter scale. However, the estimated AFC parameter varied from 0.38 to 1.0 with different flow conditions, suggesting that the AFC parameter was not a sufficient to fully capture the complexity of the flow processes in a one meter sized discrete fracture network.

Source

  • Journal Name: Vadose Zone Journal; Journal Volume: 5; Related Information: Journal Publication Date: 2005

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--52818
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 889619
  • Archival Resource Key: ark:/67531/metadc884780

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 30, 2003

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Sept. 29, 2016, 2:35 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Seol, Yongkoo; Kneafsey, Timothy J. & Ito, Kazumasa. An evaluation of the active fracture concept with modelingunsaturated flow and transport in a fractured meter-sized block ofrock, article, May 30, 2003; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc884780/: accessed August 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.