Pressure effect on the electronic structure of iron in (Mg,Fe)(Al,Si)O3 perovskite: A combined synchrotron M?ssbauer and x-ray emission spectroscopy study up to 100 GPa

PDF Version Also Available for Download.

Description

We investigated the valence and spin state of iron in an Al-bearing ferromagnesian silicate perovskite sample, (Mg{sub 0.88}Fe{sub 0.09})(Si{sub 0.94}Al{sub 0.10})O{sub 3}, at 300 K and up to 100 GPa, using diamond-anvil cells and synchrotron Moessbauer spectroscopy techniques. Under elevated pressures, our Moessbauer time spectra are sufficiently fitted by a ''three-doublet'' model, which assumes two ferrous (Fe{sup 2+}) iron types and one ferric (Fe{sup 3+}) iron type with distinct hyperfine parameters. At pressures above 20 GPa, the fraction of the ferric iron, Fe{sup 3+}/{Sigma}Fe, is about 75% and remains unchanged to the highest pressure, indicating a fixed valence state of ... continued below

Physical Description

PDF-file: 15 pages; size: 0.2 Mbytes

Creation Information

Li, J; Sturhahn, W; Jackson, J; Struzhkin, V V; Lin, J F; Zhao, J et al. January 23, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We investigated the valence and spin state of iron in an Al-bearing ferromagnesian silicate perovskite sample, (Mg{sub 0.88}Fe{sub 0.09})(Si{sub 0.94}Al{sub 0.10})O{sub 3}, at 300 K and up to 100 GPa, using diamond-anvil cells and synchrotron Moessbauer spectroscopy techniques. Under elevated pressures, our Moessbauer time spectra are sufficiently fitted by a ''three-doublet'' model, which assumes two ferrous (Fe{sup 2+}) iron types and one ferric (Fe{sup 3+}) iron type with distinct hyperfine parameters. At pressures above 20 GPa, the fraction of the ferric iron, Fe{sup 3+}/{Sigma}Fe, is about 75% and remains unchanged to the highest pressure, indicating a fixed valence state of iron within this pressure range. Between 20 and 100 GPa, the quadruple splittings of all three iron types do not change with pressure, while the isomer shift between the Fe{sup 3+} types and the Fe{sup 2+} type increases continuously with increasing pressure. In conjunction with previous x-ray emission data on the same sample, the unchanging quadruple splittings and increasing isomer shift suggest that Fe{sup 2+} undergoes a broad spin crossover towards the low-spin state at 100 GPa, while Fe{sup 3+} remains in the high-spin state. The essentially constant quadruple splittings of Fe{sup 2+} can also be taken as an indication for strong resistance against further distortion of the local iron environment after initial compression.

Physical Description

PDF-file: 15 pages; size: 0.2 Mbytes

Source

  • Journal Name: Physics and Chemistry Minerals, vol. 33, no. 8-9, September 5, 2006, pp. 575-585

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JRNL-218577
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 898500
  • Archival Resource Key: ark:/67531/metadc884717

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 23, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 30, 2016, 6:10 p.m.

Usage Statistics

When was this article last used?

Yesterday: 1
Past 30 days: 2
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Li, J; Sturhahn, W; Jackson, J; Struzhkin, V V; Lin, J F; Zhao, J et al. Pressure effect on the electronic structure of iron in (Mg,Fe)(Al,Si)O3 perovskite: A combined synchrotron M?ssbauer and x-ray emission spectroscopy study up to 100 GPa, article, January 23, 2006; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc884717/: accessed October 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.