Prospects for Universal Heat Mining: from a Jules Verne vision to a 21st century reality

PDF Version Also Available for Download.

Description

The extraction of heat or thermal energy from the Earth -- heat mining -- has the potential to play a major role as an energy supply technology for the 21st century. However, even if reservoir stimulation goals are achieved, the role of heat mining with today's energy prices and development costs is limited to only a small fraction of the earth's surface, specifically to geologically active regions where geothermal gradients are high. This paper examines the prospects for universal heat mining and the types of developments required to make it a reality. A generalized multi-parameter economic model was developed for ... continued below

Physical Description

261-270

Creation Information

Tester, J.W.; Herzog, H.J.; Chen, Z.; Potter, R.M. & Frank, M.G. January 20, 1994.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The extraction of heat or thermal energy from the Earth -- heat mining -- has the potential to play a major role as an energy supply technology for the 21st century. However, even if reservoir stimulation goals are achieved, the role of heat mining with today's energy prices and development costs is limited to only a small fraction of the earth's surface, specifically to geologically active regions where geothermal gradients are high. This paper examines the prospects for universal heat mining and the types of developments required to make it a reality. A generalized multi-parameter economic model was developed for optimizing the design and performance of hot dry rock (HDR) geothermal systems by linking an SQP nonlinear programming algorithm with a generalized HDR economic model. HDR system design parameters selected for optimization include well depth (or initial rock temperature), geofluid flow rate, number of fractures and injection temperature. The sensitivities of the optimized design parameters, HDR system performance, and levelized electricity price to average geothermal gradient, fractured area/volume, maximum allowable geofluid temperature, reservoir flow impedance, well deviation, and fracture separation have been investigated. Key technical and institutional obstacles to universal heat mining are discussed in a more general context. These include (1) developing methods for stimulating low permeability formations to provide sustained productivity with acceptable flow/pressure losses (2) dealing with barriers to change primary energy supply options when fossil energy resources are abundant and prices are low and (3) lowering the high drilling costs for developing the deep (>5 km) reservoirs required in low gradient areas. Advanced concepts in drilling technology that could lead to a linear as opposed to exponential relationship between cost and depth are discussed in light of their potential impact on heat mining.

Physical Description

261-270

Subjects

Source

  • Proceedings, nineteenth workshop on geothermal reservoir engineering, Stanford University, Stanford, CA, January 18-20, 1994

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SGP-TR-147-37
  • Grant Number: None
  • Office of Scientific & Technical Information Report Number: 889225
  • Archival Resource Key: ark:/67531/metadc884652

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 20, 1994

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 8, 2016, 9 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Tester, J.W.; Herzog, H.J.; Chen, Z.; Potter, R.M. & Frank, M.G. Prospects for Universal Heat Mining: from a Jules Verne vision to a 21st century reality, article, January 20, 1994; United States. (digital.library.unt.edu/ark:/67531/metadc884652/: accessed October 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.