A Theory for the RF Surface Field for Various Metals at the Destructive Breakdown Limit

PDF Version Also Available for Download.

Description

By destructive breakdown we mean a breakdown event that results in surface melting over a macroscopic area in a high E-field region of an accelerator structure. A plasma forms over the molten area, bombarding the surface with an intense ion current ({approx} 10{sup 8} A/cm{sup 2}), equivalent to a pressure of about a thousand Atmospheres. This pressure in turn causes molten copper to migrate away from the iris tip, resulting in measurable changes in the iris shape. The breakdown process can be roughly divided into four stages: (1) the formation of ''plasma spots'' at field emission sites, each spot leaving ... continued below

Physical Description

15 pages

Creation Information

Wilson, Perry B. March 6, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

By destructive breakdown we mean a breakdown event that results in surface melting over a macroscopic area in a high E-field region of an accelerator structure. A plasma forms over the molten area, bombarding the surface with an intense ion current ({approx} 10{sup 8} A/cm{sup 2}), equivalent to a pressure of about a thousand Atmospheres. This pressure in turn causes molten copper to migrate away from the iris tip, resulting in measurable changes in the iris shape. The breakdown process can be roughly divided into four stages: (1) the formation of ''plasma spots'' at field emission sites, each spot leaving a crater-like footprint; (2) crater clustering, and the formation of areas with hundreds of overlapping craters; (3) surface melting in the region of a crater cluster; (4) the process after surface melting that leads to destructive breakdown. The physics underlying each of these stages is developed, and a comparison is made between the theory and experimental evidence whenever possible. The key to preventing breakdown lies in stage (3). A single plasma spot emits a current of several amperes, a portion of which returns to impact the surrounding area with a power density on the order 10{sup 7} Watt/cm{sup 2}. This power density is not quite adequate to melt the surrounding surface on a time scale short compared to the rf pulse length. In a crater field, however, the impact areas from multiple plasma spots overlap to provide sufficient power density for surface melting over an area on the order of 0.1 mm{sup 2} or more. The key to preventing breakdown is to choose an iris tip material that requires the highest power density (proportional to the square of the rf surface field) for surface melting, taking into account the penetration depth of the impacting electrons. The rf surface field required for surface melting (relative to copper) has been calculated for a large number elementary metals, plus stainless-steel and carbon.

Physical Description

15 pages

Source

  • Journal Name: AIP Conf.Proc.877:27-40,2006; Conference: Invited tutorial presented at 12th Advanced Accelerator Concepts Workshop (AAC 2006), Lake Geneva, Wisconsin, 10-15 Jul 2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-12354
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 900599
  • Archival Resource Key: ark:/67531/metadc884571

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 6, 2007

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Sept. 26, 2017, 3:03 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Wilson, Perry B. A Theory for the RF Surface Field for Various Metals at the Destructive Breakdown Limit, article, March 6, 2007; [Menlo Park, California]. (digital.library.unt.edu/ark:/67531/metadc884571/: accessed May 26, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.