Heterogeneity of the Liquid Phase, and Vapor Separation in Los Azufres (Mexico) Geothermal Reservoir

PDF Version Also Available for Download.

Description

Data of chemical and isotopic composition of fluids from Los Azufres geothermal wells is interpreted in order to characterize the composition of the liquid phase, and to define the relation between this phase and fluids from steam-producing wells. Chemical and specific enthalpy data show that most wells considered are fed a mixture of steam and liquid. Thus, flashing occurs in the formation. This poses a problem on the interpretation of isotopic data, because the composition of the feeding mixture need not be representative of the composition of the liquid phase in the reservoir. Two extreme alternatives for the interpretation of ... continued below

Physical Description

253-260

Creation Information

Nieva, D.; Quijano, L.; Garfias, A.; Barragan, R.M. & Laredo, F. December 15, 1983.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Data of chemical and isotopic composition of fluids from Los Azufres geothermal wells is interpreted in order to characterize the composition of the liquid phase, and to define the relation between this phase and fluids from steam-producing wells. Chemical and specific enthalpy data show that most wells considered are fed a mixture of steam and liquid. Thus, flashing occurs in the formation. This poses a problem on the interpretation of isotopic data, because the composition of the feeding mixture need not be representative of the composition of the liquid phase in the reservoir. Two extreme alternatives for the interpretation of isotopic data are considered. In the first alternative the composition of the total discharge is considered to be the same as that of the liquid in the reservoir. In the second alternative the feeding fluid is considered to be a mixture of the liquid phase in the reservoir and the calculated fraction of steam. In addition, this steam is assumed to separate from a much larger mass of that liquid phase at the downhole temperature. The contribution of steam is then subtracted from the total discharge to yield the composition of the liquid phase. Using data for silica concentration in total discharge and separated water, the chloride concentration in the reservoir liquid is calculated. This result is used to calculate the fraction of steam in the feeding mixture of each well. The isotopic data is then corrected as proposed for the second alternative, to yield the composition of the liquid phase. Comparison of the corrected and uncorrected isotopic values shows that the correction has an important effect only when the steam mass fraction in the feeding mixture is large (> 20%). The correction tends to reduce the dispersion of data points in a {delta} D vs {delta}{sup 18}O diagram. Points representing composition of liquid phase show an approximately linear distribution, suggesting a process of mixing of two fluids. Available data appears to rule out the possibility of mixture with local meteoric or shallow ground waters. Some spatial correlations of composition are noted. The composition of fluids produced by two steam wells corresponds to steam separated from a much larger mass of liquid. Temporal variations in the composition of fluid produced by steam well A-6 suggests that this well might be fed with steam from more than one section in the reservoir.

Physical Description

253-260

Source

  • Proceedings, Ninth Workshop Geothermal Reservoir Engineering, Stanford University, Stanford Calif., December 13-15, 1983

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SGP-TR-74-32
  • Grant Number: AT03-80SF11459
  • Office of Scientific & Technical Information Report Number: 889702
  • Archival Resource Key: ark:/67531/metadc884517

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 15, 1983

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Oct. 31, 2016, 6:21 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 7

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Nieva, D.; Quijano, L.; Garfias, A.; Barragan, R.M. & Laredo, F. Heterogeneity of the Liquid Phase, and Vapor Separation in Los Azufres (Mexico) Geothermal Reservoir, article, December 15, 1983; United States. (digital.library.unt.edu/ark:/67531/metadc884517/: accessed January 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.