The BaBar LST Detector High Voltage System: Design And Implementation

PDF Version Also Available for Download.

Description

In 2004, the first two sextants of the new Limited Streamer Tube (LST) detector were installed in the BABAR experiment to replace the ageing Resistive Plate Chambers (RPCs) as active detectors for the BABAR Instrumented Flux Return (IFR) muon system. Each streamer tube of the new detector consists of 8 cells. The cell walls are coated with graphite paint and a 100 {micro}m wire forms the anode. These wires are coupled in pairs inside the tubes resulting in 4 independent two-cell segments per LST. High voltage (HV) is applied to the 4 segments through a custom connector that also provides ... continued below

Physical Description

4 pages

Creation Information

Benelli, G.; Honscheid, K.; Lewis, E.A.; Regensburger, J.J.; Smith, D.S. & U., /Ohio State August 18, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In 2004, the first two sextants of the new Limited Streamer Tube (LST) detector were installed in the BABAR experiment to replace the ageing Resistive Plate Chambers (RPCs) as active detectors for the BABAR Instrumented Flux Return (IFR) muon system. Each streamer tube of the new detector consists of 8 cells. The cell walls are coated with graphite paint and a 100 {micro}m wire forms the anode. These wires are coupled in pairs inside the tubes resulting in 4 independent two-cell segments per LST. High voltage (HV) is applied to the 4 segments through a custom connector that also provides the decoupling capacitor to pick up the detector signals from the anode wires. The BABAR LST detector is operated at 5.5 kV. The high voltage system for the LST detector was designed and built at The Ohio State University (OSU HVPS). Each of the 25 supplies built for BaBar provides 80 output channels with individual current monitoring and overcurrent protection. For each group of 20 channels the HV can be adjusted between 0 and 6 kV. A 4-fold fan-out is integrated in the power supplies to provide a total of 320 outputs. The power supplies are controlled through built-in CANbus and Ethernet (TCP/IP) interfaces. In this presentation we will discuss the design and novel features of the OSU HVPS system and its integration into the BABAR EPICS detector control framework. Experience with the supplies operation during the LST extensive quality control program and their performance during the initial data taking period will be discussed.

Physical Description

4 pages

Source

  • Journal Name: IEEE Nucl.Sci.Symp.Conf.Rec.2:1145-1148,2006; Conference: Prepared for 2005 IEEE Nuclear Science Symposium and Medical Imaging Conference, El Conquistador Resort, Puerto Rico, 23-29 Oct 2005

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-12069
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 889698
  • Archival Resource Key: ark:/67531/metadc884514

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 18, 2006

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 2, 2016, 8:30 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Benelli, G.; Honscheid, K.; Lewis, E.A.; Regensburger, J.J.; Smith, D.S. & U., /Ohio State. The BaBar LST Detector High Voltage System: Design And Implementation, article, August 18, 2006; [Menlo Park, California]. (digital.library.unt.edu/ark:/67531/metadc884514/: accessed November 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.