UNIVERSITY OF CALIFORNIA

Radiation Laboratory

BERKELEY, CALIFORNIA
UNIVERSITY OF CALIFORNIA
Radiation Laboratory

UCLR 1127

INDEX NO. 303-60 11-S

This document contains 3 pages
This is copy 14 of 16 Series A

RESTRICTED DATA

DECLASSIFIED

Issued to **Info. Div.**

CONFIDENTIAL

classification

Each person who receives this document must sign the cover sheet in the space below.

<table>
<thead>
<tr>
<th>Route to</th>
<th>Noted by</th>
<th>Date</th>
<th>Route to</th>
<th>Noted by</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R. Wallace</td>
<td>7-17-51</td>
<td>1/16/A</td>
<td>A. Hildebrand</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2/16/A</td>
<td>A. Hildebrand</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3/16/A</td>
<td>A. Hildebrand</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4/16/A</td>
<td>W. D. Haynes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5/16/A</td>
<td>J. S. Norton</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6/16/A</td>
<td>L. Alvarez</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7/16/A</td>
<td>R. Ball</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8/16/A</td>
<td>G. Parry</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9/16/A</td>
<td>D. Sevill</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10/16/A</td>
<td>W. Penfold</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11/16/A</td>
<td>A. Longacre</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12/16/A</td>
<td>E. Longacre</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13/16/A</td>
<td>H. Gordon</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14/16/A</td>
<td>Info. Div.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15/16/A</td>
<td>W. M. Trobeck</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16/16/A</td>
<td>Mech. Eng. Dept</td>
<td></td>
</tr>
</tbody>
</table>

Series D

1 thin 80. Legal Affairs 0i	12-10-54
90 Pub Affairs 0k	12-10-54
100 Patent Dept	12-10-54
110 Patent Dept	12-10-54
120 Info Div	
When the LTA was in its early discussion days, several modifications of the basic drift tube geometry were explored, but all were found to be less efficient than the geometry used in the 40-foot linear accelerator.

Longacre's extensive data on shunt impedance per unit length and transit time factor, both as functions of β, have shown a rapidly decreasing acceleration efficiency as β is increased. The so-called figure of merit of a "unit cell" of the accelerator is defined as $2' T^2$, where $2'$ is the shunt impedance per unit length relative to that of a simple cavity with no drift tubes, and T is the fraction of the gap voltage which appears as particle energy. At high values of $\beta (0.5)$, the figure of merit has dropped to about 20 percent.

It appears likely that by changing the basic geometry of the machine at some value of β in the neighborhood of 0.4, that the overall figure of merit of the accelerator can be raised substantially. Figure 1 shows the geometry of the accelerator at near the critical value of β.

The new geometry consists of a series of klystron type cavities back to back, with neighboring cavities excited out of phase. This has some similarity to the mode used in electron accelerators, which is shown in Figure 2.
In this geometry, the holes are large enough to allow good coupling between adjacent sub-cavities. In Figure 1, it would probably be necessary to cut holes through the diaphragms, near the cavity wall, so that the cavity fields could "find out what was going on in their neighboring cavities". There is little doubt, from experience with electron accelerators, that the proper mode pattern could be established in a stable manner in a long cavity designed to these specifications.

We now investigate the gain to be had by such a change in geometry. The main difference between the two types of geometry is in the repeat length, $\beta \lambda$ or $\beta \lambda / 2$. At a repeat length of $\beta \lambda / 2$, the "effective β" of a cell is $\beta / 2$. In other words, the shunt impedance can be found by looking up the shunt impedance of a "standard cell" with half the value of β. Since we know that Z goes down as β goes up, this gives an immediate gain. Also, the transit time factor is considerably increased, for the following reason: The drift tube field is roughly equal to the average field divided by g/L. So if we design to a certain maximum field, for X-ray reasons, we design to a minimum value of g/L. (If we could make g/L smaller, the transit time factor would increase, but the electron loading would also go up.) But with a repeat length of $\beta \lambda / 2$ instead of $\beta \lambda$, the transit time across a gap of given g/L has been cut by a factor of 2, since both g and L are smaller by a factor of 2. The new geometry therefore gives higher values of Z, as
Possible Improvements in Cavity Geometry at High Energy
End of Mark II.

well as higher values of β.

The one thing left out of this argument is the effect of end walls of the
unit cells. In "standard geometry", the end walls can be left out, but in
the new geometry, they must be retained to carry the charging currents, which
are in the same direction on either side of the wall. The simplest calculation
shows that at a β of $1/2$, probable increase in the figure of merit is greater
than 50 percent, when the end walls are accounted for.

It would appear that a serious investigation should be made of this
possible change in cavity design. The data are all available from the work
of Longacre's group.

One additional advantage of the new geometry is that the absolute voltage
across any gap is one-half of that across a "standard geometry" gap. This
may be of great importance in eliminating x-ray induced activities.