COMPARISON OF THERMAL PROPERTIES OF THERMAL BARRIER COATING DEPOSITED ON IN738 USING STANDARD AIR PLASMA SPRAY WITH 100HE PLASMA SPRAY SYSTEM

PDF Version Also Available for Download.

Description

A typical blade material is made of Nickel super alloy and can bear temperatures up to 950°C. But the operating temperature of a gas turbine is above the melting point of super alloy nearly at 1500°C. This could lead to hot corrosions, high temperature oxidation, creep, thermal fatigue may takes place on the blade material. Though the turbine has an internal cooling system, the cooling is not adequate to reduce the temperature of the blade substrate. Therefore to protect the blade material as well as increase the efficiency of the turbine, thermal barrier coatings (TBCs) must be used. A TBC ... continued below

Creation Information

Uppu, N.; Mensah, P.F. & Ofori, D. July 1, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 47 times , with 5 in the last month . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A typical blade material is made of Nickel super alloy and can bear temperatures up to 950°C. But the operating temperature of a gas turbine is above the melting point of super alloy nearly at 1500°C. This could lead to hot corrosions, high temperature oxidation, creep, thermal fatigue may takes place on the blade material. Though the turbine has an internal cooling system, the cooling is not adequate to reduce the temperature of the blade substrate. Therefore to protect the blade material as well as increase the efficiency of the turbine, thermal barrier coatings (TBCs) must be used. A TBC coating of 250 μm thick can reduce the temperature by up to 200° C. Air Plasma Spray Process (APS) and High Enthalpy Plasma Spray Process (100HE) were the processes used for coating the blades with the TBCs. Because thermal conductivity increases with increase in temperature, it is desired that these processes yield very low thermal conductivities at high temperatures in order not to damage the blade. An experiment was carried out using Flash line 5000 apparatus to compare the thermal conductivity of both processes.The apparatus could also be used to determine the thermal diffusivity and specific heat of the TBCs. 75 to 2800 K was the temperature range used in the experimentation. It was found out that though 100HE has high deposition efficiency, the thermal conductivity increases with increase in temperatures whiles APS yielded low thermal conductivities.

Source

  • Journal Name: ICCE-14 FOURTEENTH ANNUAL INTERNATIONAL CONFERENCE ON COMPOSITES/NANO ENGINEERING; Conference: ICCE-14 Fourteenth International Conference on Composites or Nano Engineering; Boulder, Colorado; July 2-8, 2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: DOE/NA/27041-2
  • Grant Number: FG52-05NA27041
  • Office of Scientific & Technical Information Report Number: 889137
  • Archival Resource Key: ark:/67531/metadc884490

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 1, 2006

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Oct. 31, 2016, 7:47 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 5
Total Uses: 47

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Uppu, N.; Mensah, P.F. & Ofori, D. COMPARISON OF THERMAL PROPERTIES OF THERMAL BARRIER COATING DEPOSITED ON IN738 USING STANDARD AIR PLASMA SPRAY WITH 100HE PLASMA SPRAY SYSTEM, article, July 1, 2006; United States. (digital.library.unt.edu/ark:/67531/metadc884490/: accessed July 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.