Nb3Sn for Radio Frequency Cavities

PDF Version Also Available for Download.

Description

In this article, the suitability of Nb3Sn to improve theperformance of superconducting Radio-Frequency (RF)cavities is discussed.The use of Nb3Sn in RF cavitiesis recognized as an enabling technology toretain a veryhigh cavity quality factor (Q0) at 4.2 K and tosignificantly improve the cavity accelerating efficiency per unitlength(Eacc). This potential arises through the fundamental properties ofNb3Sn. The properties that are extensively characterized in theliterature are, however, mainly related to improvements in currentcarrying capacity (Jc) in the vortex state. Much less is available forthe Meissner state, which is of key importance to cavities. Relevantdata, available for the Meissner state is summarized, and it ... continued below

Creation Information

Godeke, A. December 18, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In this article, the suitability of Nb3Sn to improve theperformance of superconducting Radio-Frequency (RF)cavities is discussed.The use of Nb3Sn in RF cavitiesis recognized as an enabling technology toretain a veryhigh cavity quality factor (Q0) at 4.2 K and tosignificantly improve the cavity accelerating efficiency per unitlength(Eacc). This potential arises through the fundamental properties ofNb3Sn. The properties that are extensively characterized in theliterature are, however, mainly related to improvements in currentcarrying capacity (Jc) in the vortex state. Much less is available forthe Meissner state, which is of key importance to cavities. Relevantdata, available for the Meissner state is summarized, and it is shown howthis already validates the use of Nb3Sn. In addition, missing knowledgeis highlighted and suggestions are given for further Meissner statespecific research.

Source

  • The International Workshop on: Thin Films and newideas for pushing the limits of RF superconductivity, Legnaro NationalLabs, Legnaro, Italy, October 9-12, 2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--62140
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 902144
  • Archival Resource Key: ark:/67531/metadc884466

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 18, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Sept. 30, 2016, 1:59 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Godeke, A. Nb3Sn for Radio Frequency Cavities, article, December 18, 2006; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc884466/: accessed August 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.