Superconducting Materials Testing with a High-Q Copper RF Cavity

PDF Version Also Available for Download.

Description

Superconducting RF is of increasing importance in particle accelerators. We have developed a resonant cavity with high quality factor and an interchangeable wall for testing of superconducting materials. A compact TE01 mode launcher attached to the coupling iris selectively excites the azimuthally symmetric cavity mode, which allows a gap at the detachable wall and is free of surface electric fields that could cause field emission, multipactor, and RF breakdown. The shape of the cavity is tailored to focus magnetic field on the test sample. We describe cryogenic experiments conducted with this cavity. An initial experiment with copper benchmarked our apparatus. ... continued below

Physical Description

3 pages

Creation Information

Tantawi, S.G.; Dolgashev, V.; Bowden, G.; Lewandowski, J.; Nantista, C.D.; /SLAC et al. November 7, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Superconducting RF is of increasing importance in particle accelerators. We have developed a resonant cavity with high quality factor and an interchangeable wall for testing of superconducting materials. A compact TE01 mode launcher attached to the coupling iris selectively excites the azimuthally symmetric cavity mode, which allows a gap at the detachable wall and is free of surface electric fields that could cause field emission, multipactor, and RF breakdown. The shape of the cavity is tailored to focus magnetic field on the test sample. We describe cryogenic experiments conducted with this cavity. An initial experiment with copper benchmarked our apparatus. This was followed by tests with Nb and MgB2. In addition to characterizing the onset of superconductivity with temperature, our cavity can be resonated with a high power klystron to determine the surface magnetic field level sustainable by the material in the superconducting state. A feedback code is used to make the low level RF drive track the resonant frequency.

Physical Description

3 pages

Source

  • Contributed to Particle Accelerator Conference (PAC 07), Albuquerque, New Mexico, 25-29 Jun 2007

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-12957
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 919418
  • Archival Resource Key: ark:/67531/metadc884423

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 7, 2007

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Dec. 9, 2016, 7:19 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Tantawi, S.G.; Dolgashev, V.; Bowden, G.; Lewandowski, J.; Nantista, C.D.; /SLAC et al. Superconducting Materials Testing with a High-Q Copper RF Cavity, article, November 7, 2007; [Menlo Park, California]. (digital.library.unt.edu/ark:/67531/metadc884423/: accessed November 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.