Numerical Modeling of the Radio Nebula from the 2004 December 27 Giant Flare of SGR 1806-20

PDF Version Also Available for Download.

Description

The authors use the relativistic hydrodynamics code Cosmos++ to model the evolution of the radio nebula triggered by the Dec. 27, 2004 giant flare event of soft gamma repeater 1806-20. They primarily focus on the rebrightening and centroid motion occurring subsequent to day 20 following the flare event. They model this period as a mildly relativistic ({gamma} {approx} 1.07-1.67) jetted outflow expanding into the intergalactic medium (IGM). They demonstrate that a jet with total energy {approx} 10{sup 46} ergs confined to a half opening angle {approx} 20{sup o} fits the key observables of this event, e.g. the flux lightcurve, emission ... continued below

Physical Description

PDF-file: 38 pages; size: 1.2 Mbytes

Creation Information

Salmonson, J D; Fragile, P C & Aninos, P May 25, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The authors use the relativistic hydrodynamics code Cosmos++ to model the evolution of the radio nebula triggered by the Dec. 27, 2004 giant flare event of soft gamma repeater 1806-20. They primarily focus on the rebrightening and centroid motion occurring subsequent to day 20 following the flare event. They model this period as a mildly relativistic ({gamma} {approx} 1.07-1.67) jetted outflow expanding into the intergalactic medium (IGM). They demonstrate that a jet with total energy {approx} 10{sup 46} ergs confined to a half opening angle {approx} 20{sup o} fits the key observables of this event, e.g. the flux lightcurve, emission map centroid position, and aspect ratio. In particular, they find excellent agreement with observations if the rebrightening is due to the jet, moving at 0.5 c and inclined {approx} 0{sup o}-40{sup o} toward the observer, colliding with a density discontinuity in the IGM at a radius of several 10{sup 16} cm. They also find that a jet with a higher velocity, {approx}> 0.7c, and larger inclination, {approx}> 70{sup o}, moving into a uniform IGM can fit the observations in general, but tends to miss the details of rebrightening. The latter, uniform IGM model predicts an IGM density more than 100 times lower than that of the former model, and thus suggests an independent test which might discriminate between the two. One of the strongest constraints of both models is that the data seems to require a non-uniform jet in order to be well fit.

Physical Description

PDF-file: 38 pages; size: 1.2 Mbytes

Source

  • Journal Name: The Astrophysical Journal, vol. 652, N/A, December 1, 2006, pp. 1508-1522; Journal Volume: 652

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JRNL-221643
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 900870
  • Archival Resource Key: ark:/67531/metadc884320

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 25, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Dec. 7, 2016, 6:23 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Salmonson, J D; Fragile, P C & Aninos, P. Numerical Modeling of the Radio Nebula from the 2004 December 27 Giant Flare of SGR 1806-20, article, May 25, 2006; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc884320/: accessed October 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.