Biomimetic Nanocomposites of Calcium Phosphate and Self-Assembling Triblock and Pentablock Copolymers

PDF Version Also Available for Download.

Description

In an effort to mimic the growth of natural bone, self-assembling, micelle and gel-forming copolymers were used as a template for calcium phosphate precipitation. Because of the cationic characteristics imparted by PDEAEM end group additions to commercially available Pluronic{reg_sign} Fl27, a direct ionic attraction mechanism was utilized and a polymer-brushite nanocomposite spheres were produced. Brushite coated spherical micelles with diameters of {approx}40 nm, and agglomerates of these particles (on the order of 0.5 {mu}m) were obtained. Thickness and durability of the calcium phosphate coating, and the extent of agglomeration were studied. The coating has been shown to be robust enough ... continued below

Physical Description

2158kb

Creation Information

Enlow, Drew Lenzen August 9, 2006.

Context

This thesis or dissertation is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 16 times . More information about this document can be viewed below.

Who

People and organizations associated with either the creation of this thesis or dissertation or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this thesis or dissertation. Follow the links below to find similar items on the Digital Library.

Description

In an effort to mimic the growth of natural bone, self-assembling, micelle and gel-forming copolymers were used as a template for calcium phosphate precipitation. Because of the cationic characteristics imparted by PDEAEM end group additions to commercially available Pluronic{reg_sign} Fl27, a direct ionic attraction mechanism was utilized and a polymer-brushite nanocomposite spheres were produced. Brushite coated spherical micelles with diameters of {approx}40 nm, and agglomerates of these particles (on the order of 0.5 {mu}m) were obtained. Thickness and durability of the calcium phosphate coating, and the extent of agglomeration were studied. The coating has been shown to be robust enough to retain its integrity even below polymer critical micelle concentration and/or temperature. Calcium phosphate-polymer gel nanocomposites were also prepared. Gel samples appeared as a single phase network of agglomerated spherical micelles, and had a final calcium phosphate concentration of up to 15 wt%. Analysis with x-ray diffraction and NMR indicated a disordered brushite phase with the phosphate groups linking inorganic phase to the polymer.

Physical Description

2158kb

Language

Identifier

Unique identifying numbers for this document in the Digital Library or other systems.

  • Report No.: IS-T 2820
  • Grant Number: W-7405-Eng-82
  • Office of Scientific & Technical Information Report Number: 892726
  • Archival Resource Key: ark:/67531/metadc884287

Collections

This document is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this thesis or dissertation?

When

Dates and time periods associated with this thesis or dissertation.

Creation Date

  • August 9, 2006

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Sept. 21, 2017, 8:02 p.m.

Usage Statistics

When was this document last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 16

Interact With This Thesis Or Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Enlow, Drew Lenzen. Biomimetic Nanocomposites of Calcium Phosphate and Self-Assembling Triblock and Pentablock Copolymers, thesis or dissertation, August 9, 2006; Ames, Iowa. (digital.library.unt.edu/ark:/67531/metadc884287/: accessed October 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.