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Abstract 

The Dirac-Lorentz equation describes the dynamics of a classical point charge in an 

electromagnetic field, accounting for radiative effects in a manifestly covariant and 

gauge invariant manner. The validity of this equation is assessed by direct comparison 

between the Dirac-Lorentz dynamics of an electron subjected to a plane wave in 

vacuum and the well-known recoil associated with Compton scattering. In the small 

recoil limit, the classical Dirac-Lorentz is shown to yield the correct momentum transfer. 

For larger values of the recoil, the quantum scale appears explicitly, and the classical 

Dirac-Lorentz equation does not properly model this situation, as shown by deriving an 

exact analytical solution for a monochromatic plane wave of wavenumber  to any 

order in k r , where  is the classical electron radius. 
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1 Introduction 

In 1938, Dirac published an important paper [1] dealing with radiation reaction within the 

context of classical relativistic electrodynamics, and containing the derivation of a 

manifestly covariant and gauge invariant equation for the dynamics of a point charge in 

an electromagnetic field accounting for radiative effects: the Dirac-Lorentz equation [1-

5]. The main purpose of that work was to determine which of the divergences arising in 

QED, if any, had classical counterparts, thus providing physical insight regarding their 

origin. Interestingly, however, Dirac did not necessarily regard the Dirac-Lorentz 

equation as representing some classical limit of QED; rather, he considered it as a 

mathematical extension of the Lorentz equation, possessing both covariance and gauge 

invariance. 

Since then, a rather large number of papers have been published, using the Dirac-

Lorentz equation to account for radiation reaction in semi-classical systems. 

Nevertheless, the question of the domain of applicability of the Dirac-Lorentz equation 

remains open. 

In this paper, we propose a direct comparison between the Dirac-Lorentz dynamics of 

an electron subjected to a plane wave in vacuum and the well-known recoil associated 

with Compton scattering. In this manner, the validity of the Dirac-Lorentz equation can 

be assessed within a simple, well-defined context; furthermore, the problem can be 

studied analytically and compared in both cases. To our knowledge, the exact plane 

wave solution for the Dirac-Lorentz equation presented here had not been previously 

derived. 
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This paper is organized as follows: to provide the proper background, the Lorentz 

dynamics of an electron subjected to a plane wave of arbitrary strength are first briefly 

reviewed, as well as the salient steps of the derivation of the Dirac-Lorentz equation; the 

plane wave dynamics of an electron are then studied including classical radiation 

reaction effects, and compared in detail to the well-known Compton scattering 

kinematics. 

 

2 Lorentz plane wave dynamics 

For conciseness, we use electron units, where length, time, mass, and charge are 

measured in units of the classical electron radius, , , the electron 

rest mass, m , and its absolute charge, e , respectively. In these units, the vacuum 

permittivity is � , and its permeability is ; the reduced value of Planck’s 

constant is given by the inverse fine structure constant: , which is also 

the ratio between the quantum and classical scales. 

2
0 0/ 4r e m c���

4� ��

1/�� ��

2
0 0 /r c

0/C r�

0

0 1/ 4� �

�

�

0

The electron normalized 4-velocity and 4-acceleration are defined as u d , and 

, where �  is the dimensionless proper time along the dimensionless electron 

world line, 

x
� �
�

a d u
� �
�

� �x
�
� , and where the notation /d d d

�
��  is used. The length of the velocity 

4-vector, u u  reflects the relation between energy and momentum, while 

the 4-velocity and 4-acceleration are orthogonal: 

2u �� �
21�

�
� �

� � 0 2u u a� �

� � �
� �d u . 

Within this context, the Lorentz force equation reads: � � ,u A A u� �

� �� � � � �
� � � � � � �

��

a F  

where the antisymmetric electromagnetic field tensor F  is expressed in terms of the 
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normalized 4-potential, , and where the standard notation � �  is used. For a 

plane wave with 4-wavenumber k , the 4-potential is only a function of the phase, 

, with 

A
�

/ x�

�
� �

�

k x�

�
� � � � � � �A x�

� A� � � , and the partial derivatives reduce to: 

� �A d A� � �� �� k A�d� �� �� �� � . Applying this result to the Lorentz force equation, we 

have � � � �a k u d� � �� A u d�

� � �� k A�

� ; now taking the derivative of the phase with respect 

to the proper time, � �d d , which defines the light-cone 

variable, � , we find that: 

k x k d x� �

� � �� � � �k u�
�

� �� � �� �

, .
d�

�
� �

du dAd d u
d d d

� ��

� � �
�

dAu
d d� �

� �
dAA k u� �� �

� �

� �
� �

� 	
a k
� �

� �
� �
� 	

� �
d d
d d
�

� �

0�
�

uk k� �
�

�

�
�
	

� �

k k
�

0A d A�

� ��� � � �

0d
�
� �

 

 � �  (1) 

 

The dynamics of the light-cone variable are described by: 

 

 � � .dA dAk u k u k
d d

� �

� �

� � � � �

�

� � �
�� � �

� 	 �
 (2) 

 

The first term in Eq. (2) corresponds to the dispersion relation in vacuum, or photon 

mass-shell condition, , while the second term corresponds to the Lorentz 

gauge condition: k d A�

� �� � . The light-cone variable is a constant of 

the electron motion: . 

�

�
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Equation (1) suggest seeking a solution of the form � �k f
� � �

�� �u A , where  is a 

function of the electron phase to be determined. As the radiation pressure force is 

proportional to 

f

A A�

�
 and directed along the incident wave propagation, we consider the 

linear combination � � � �f A , where �  and �  are constants that are 

determined by satisfying both Eq. (1) and the condition u u . Deriving 

A�

�
� � � �� �

1� �
�

�

� �u A k
� � �
� � A A�

�
� ��� � �� �  with respect to � , and inserting the result in Eq. (1), we 

find that: 

 

 � �2 2 dA dA dAdA dAA A u A k f A
d d d d

� �

� � �� �

� � �
� �� �

� � � �
� �� � � � �� � ,

d
�

�

�

 (3) 

 

where we have used the gauge condition to eliminate . Equation (3) then yields 

. The normalization of the 4-velocity yields � : 

k d A�

� �

1/ 2� �

 

 

� �� �

� �

21 2 ,

1 2 2 1 2

u u A k f A k f A A fk A f k k

k A
A A fk A A A k A A A A A k A

� � � � � �

� � � � � �

�

�� � � � � �

� � � � � � �
� �

�

� � � � � � � �

� �
� � � � � � � � �� �� �

� 	
.��

 

(4) 

The result is: 

 

 � � � �
� �
� �

1
.

2
A A

u x A k
k A

�

��

� � � �

�

�
�

�

� ��
� � � �

� �� 	
 (5) 
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Finally, initial conditions can be matched by regauging the 4-potential by a constant 4-

vector: . Furthermore, because of the photon mass-shell condition, the 

light-cone variable reduces to 

0A A u� �
� �

�

� � � �k u k A k k f k A� � �

� � � �
� � � � � � �

0

�� � , which has the 

constant value � � ; as a result, Eq. (5) can be expressed as: 0 k u�

�
�� �

 

 0
0

0

2 ,
2

A A A uu u A k
k u

� �

� � � � � �

�

�

� ��
� � � �

� �
�  (6) 

 

by noting that � � � �0 0 02A u A u A A A u� � �

� ��
� � � � 1� . We now have � � 0lim u u� �

� �
���

� , 

since � �lim A����
0� � �

� �� � � �
�

��� ���
� � � �

. This result shows that for a classical electron interacting with a 

plane wave in vacuum, there is no net energy exchange in the absence of radiative 

corrections, and is generally known as the Lawson-Woodward theorem. The condition 

that the 4-potential vanishes at infinity, to within a constant, is quite general; in 

particular, there are no temporal profiles that will yield electron acceleration for plane 

waves in vacuum, including chirped pulses. This also confirms that the Lorentz force 

does not yield radiative recoil: . 0 0�� �

 

3 Dirac-Lorentz equation 

The Dirac-Lorentz equation includes such radiative effects; for completeness, the main 

steps of the derivation are outlined here. The electron 4-current is: 
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 � � � � � �' '
4 ,s 'j x u x x x� � � � � ��

��

��

� � �� d�

sA

 (7) 

 

and the corresponding self-electromagnetic field, F A , satisfies the wave 

equation, 

s s
�� � � � �� � � �

� � � �4s sA x j� � � ��� ��

� �

x . Green functions can be used to solve this problem, 

with � � � �' 's '4A x u x� � � �

��

��
� G x x� �� �� � d . 

The self-force is simply given by the Lorentz force in the self-fields: 

 

 � � � � � � � � � �' ' ' .s s sF A A u u x u x u x G x x d� �

� � � � � � � � � � � � � � �
��

��

� �� � � � � � � � � � �� ��
'  

(8) 

The advanced and retarded Green functions depend on the spacetime interval 

� � � �2 's x x x x
�

�

� � �
' : � � � �� �2 '

0 0 0 01 /G s x x x x�
� '� �� � � �� ��

�

. As a result, the partial 

derivatives operate identically to � 2
'2

s
x x

� � �
� �� � : 

 

 � � � �� � � �� �' ' ' '
22 .s GF u x u x x x u x x x d

s
�

� � � � � � � � � � �

��

��

�� �� � � � �� � ��
'  (9) 

 

Introducing ' , and Taylor expanding around the electron, at the singular point 

, we have: 

"
� � �� �

" 0� �
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� � � �

2 3' " " "

2' " " "

1 1 ,
2 6

1 ,
2

x x u a d a

u x u u a

� � � � � �

� � � � �

� � �

� � � �

� � � � �

� � � � � �

�

�

 (10) 

 

which yields , and 22s ��
" � �� �2 "/ 1/ 2 /G s G�� � � � ��

"
� . The self-electromagnetic force 

is: 

 

 � �
2" "

"
" .

2 3
s da GF a u a a

d
� �

� � � �

� �

�

� �

��

��

� �� � ��
� � �	 � �

� �� �� �
�� d�




�

 (11) 

 

This equation can be integrated by parts; following Dirac’s procedure and using the 

time-symmetrical Green function, � / 2G� �

� �G G , to renormalize the divergent 

electromagnetic mass of the point electron, � �" " "/ 2d� �� �
��

��
� , and adding the Lorentz 

term yields the Dirac-Lorentz equation: 

 

 � �0 .
da

a F u u a a
d

��

� �� � �
�

�

�
� �

� � � �� �
� 	

 (12) 

 

Here, �  is the time-scale for classical radiative corrections, expressed in units of 

. A number of conceptual difficulties arise within the context of Eq. (12), including 

so-called runaway solutions and acausal effects; for more details, see Refs. [1-5]. 

0 2 / 3�

0 /r c
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4 Dirac-Lorentz plane wave dynamics 

We now turn our attention to the Dirac-Lorentz dynamics of a point electron in a plane 

wave. Using the 4-potential, the Dirac-Lorentz equation reads 

 

 � � � �0 .
du da

A A u u a a
d d

� �

� � � � � �
�

� �

� �
� �

� � � � � � �� �
	 


 (13) 

 

As seen in Section 2, in the case of a plane wave, the electron phase is � , and 

the partial derivatives of the 4-potential take a simple form: 

k x�

�
� �

 

 .A dA dAA k k
x x d d
� � �

� � � � �� �

�

� �

� �
� � � � � � �

� �
E  (14) 

 

The Dirac-Lorentz equation now reads 

 

 � � � � � �0 .
du da

k E u E k u u a a
d d

� � �

� � � � � �
�

� �

� �
� �

� � � �� �
� 	

 (15) 

 

Choosing the reference frame so that the incident plane wave propagates along the z-

axis, with � �0,0,0,
�

� �� 0k , we have � �0 zu�

�
� �� � �k u ; furthermore, the gauge 

condition leads to : 

��

0zE E�

 

 �0 00 z
dA

�.A k E E E
x d

�

� �

� ��

�
�

�

�
� � � � � � �

�
 (16) 
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The scalar product of the field and 4-velocity is now given by 

 

 � �,zE u E u�

�
�

� �
� � � �E u

�
 (17) 

 

where we have defined , and Eq. (15) now reads: 0zE E E� �
�

 

 � � � � � �0 0 .z z

du da
k E u E u u a

d d
� � �

� �
� � � �

� �
� �

a
� �

� �
� �� � � � � � � �� �	 


	 

E u

�
 (18) 

 

Since k , the transverse dynamics are governed by: 
�
� 0

 

 � � � � � �0 0 ,z
d d du a a
d d d

� �

� �
� � � � �

� � �

� � �

� � �
a a

�

� � �
� � � � � � � �

�
� � � �
� 	 �

u a aE u E
	

u  (19) 

 

while the axial and temporal components of the Dirac-Lorentz equation yield 

 

 
� � � � � �

� � � � � �

0

0
0 0

,

,

z z
z z z z

z z

du daE u E u u a a
d d

dad E u E u a a
d d

�

�

�

�

� � � � �
� �

�
� � � � � �

� �

� �

� �

� �
� �� � � � � � � �� � 	 


� �

� �
� �� � � � � � � �� � 	 


� �

E u

E u

�

�

 (20a,b) 

 

respectively, and reduce to 
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� �

� �

2

0 0 2

2

0 0 2

,

.

z z
z

du d u u a a
d d

d d a a
d d

�

�

�

�

� �
� �

� �
� � �

� �

� �

� �

� �
� � � �� �

	 


� �
� � � �� �

	 


E u

E u

 (21a,b) 

 

Multiplying Eqs. (21a) and (21b) by � , and subtracting the axial from the temporal 

component, we obtain an equation governing the evolution of the electron light-cone 

variable: 

0

 

 � �
2

0 2 .d d a a
d d

�

�

� �
� �

� �

� �
� �� �

	 

 (22) 

 

Now using the electron phase as the independent variable, and the fact that d , we 

have: 

�
� ��

 
2 2

0 2 .
2

d d a a
d d

�

�

� �
�

� �

� �� �
� �� �	 


� � �
 (23) 

 

4.a First-order recoil 

In the limit where radiative corrections are small, one can replace the quantities inside 

the brackets by their Lorentz dynamics, zeroth-order values:  

 

 � � � � � �
22 22 2 2 2 2

0 ,za a a a d d d�

� � � �
� � � �

� � � � � � �a a u A � �
A  (24) 
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and d . Equation (23) then reduces to: 0�� �

 

 
� �

� �
2 2

2 2
0 0

1, ,d d d d A g
d d d d
�

� � � � �
� � � � � �

� �
� �� � � �

� �� �	 
 	 

� �� � � � �

A A
� �

2
0 0  (25) 

 

where the last equality holds for circularly polarized light, and where � �g �  is the 

temporal envelope of the electric field. Equation (25) can be solved to find: 

 

 
� �

� �2 2
0 0

0

1 1 .A g d
�

� �
� � � ��

� � � �  (26) 

 

Here � �0 lim����
��  is the initial value of the electron light-cone variable. To calculate 

the total recoil momentum, we first consider the limit of Eq. (26) for � : 

� �

�

� ��

 

  (27) � � � �
1

2 2 2 2 2
0 0 0 0 0 0 0 01 .A g d A g d� � � � � � � � � � �

�
�� ��

�

�� ��

� �� � �
� �� 	� �

 

After the interaction, for small momentum transfer, where u , energy conservation 

implies that 

1z
�

�

2
1 zu�

��� . Finally, we use the definition of the light-cone variable: �

� �0 zu� � �k u�

�
� � � � , where 0 0 0 /r c�� �  is the wave frequency measured in electron 

units. Combining these results, and considering a reference frame where the electron is 
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initially at rest, with � , u , and � , we find that the classical Dirac-Lorentz 

recoil, , is: 

0 1� 0 0z � 0 �� 0

zu�

0 0

0
0 0

2
3

r
c

� �z

z zu u

�

�

d

�

� �

�� �
��

� 	 �

� �

2 2

2

2 '

0

z

z

d du
d d

d d
d d

d d
d d

d d
d d

� �

� �

� �

�

� �

� �
� �
� 	

�
� � �

�

� �

� �

2

2

2

�

�

�
ua a

�

 

 
� �

� �

2 2 2
0 0

0 0

2 2
0

11 ,

.z

u A g

u A g d

� � �
� �

� �

��

��

��

��

�
���

��

 (28) 

 

4.b Higher-order perturbation theory 

We now consider higher-order terms; proceeding systematically, we first express the 

square of the 4-acceleration in terms of derivatives with respect to the phase: 

 

 

� � � �

� �

2

2 2 2

.

z z

z

d
d

u d
d

du u
d

u

�

�

�

�

� �
�

� �
�

�

�

�

� � � �
� � �� � � �
� 	 � 	


 �� � � � �
�� � � � � �

� � 	 	 � 	� �


 �� �
�� � �

� � 	� �


 �� �
�� � �

� � 	� �

u

u

u

 (29) 

��

 

Here the prime denotes derivation with respect to � . 

The transverse dynamics equation is: 
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 � �
2 '

2
0

0

,z
d d d d d u
d d d d d

�
� � � � � � �

� � � � � �

� � �

� �

� �� �� � � �� �
� 	 
 
 	� � �� � � �

� �� � � �� �� �� �

u u uE u  (30) 

 

while the evolution of the light-cone variable is governed by 

 

 � �
22 2 '

2
0 2

0

.
2 z

d d d d u
d d d d
� � �

� �
� � � � �

�

� �
�

� �� � � �� �
� 	 	 
� � �� � � �

� �� �� �� �� �� �

u  (31) 

 

In order to make the perturbation parameter � �  appear explicitly, we introduce 

; the light-cone dynamics are now described by: 

0 0��

0/zq u� �� � � �

 

 

� �

� �

� �

22 2
2 2 '

0 0 0 2

2
2' ' " 2 '

2 2' " 2 ' 2 ' ' '

,
2

.

z

z

z

dq d q d dq q u
d d d d

d dq q qq q q u
d d

q qq q q q u

� � � �
� � � �

�
� �

� �

�

�

�

� �

�

� �� � � �� �
� 	 	 
� � �� � � �

� �� �� �� �� �� �

� �� �� �� �
� 
 	 	 
� �� �

� �� �� �� �� �

� �� 
 	 
 

� �

u

u

u

�  (32) 

 

The transverse dynamics equation reads: 

 

 � �
2' ' ' " ' ' ' .zq q q qq u�

� � � � � � �

�� � � � � �
�

u E u u u u u '
� �

�
 (33) 
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Using the normalization of the 4-velocity, u u , and the definition of 

, the derivative '  can be expressed in terms of u , , and their 

derivatives: 

2 21 zu�

�
�

�
� � � � �u 2

uzq �� �
'
zu ��

�
q

 

 

� �

2 2 2 2

2
' ' ' ' 2

2

1 1, ,
2 2

1 1 2 1

z

z

q qu
q q

du q
d q q

�

�
�

� �

�

� � �

� � � �
� �
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Using this result in Eqs. (32) and (33), we have: 
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u E u u u u u u u u u �21 .  (36) 

 

At this point, we note that a number of terms can be eliminated by taking the limit where 

the normalized vector potential : q  and its derivatives are all at least quadratic in 2
0 1A �

'

0A , and u  and its derivatives are all at least linear in 
� 0A , therefore , 

, and q . This limit is appropriate, since we intend to compare 

the Dirac-Lorentz recoil to Compton scattering, where the vector potential of the incident 

photons is vanishingly small. Within this context, Eq. (35) and (36) reduce to: 
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Equation (37) shows that � � � �1
0 A�

�

� � O O 1
0
�q q , therefore, we can recast Eqs. (37) and 

(38) as 
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and solve Eq. (40) by recurrence: assuming that we have, to order , n

 

 � �0 ,
n

n
n

dq
d

�
�

�

� �
� � �

Au A �  (41) 

 

and deriving twice with respect to � , we find that 

 

 � �
2

" '
0 2 .

n
n

n
dq
d

�
�

�

�

� � �
� � �

Au E �  (42) 

 

16 



Now replacing u  by the above expression in Eq. (40), we have: "
�
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which integrates to 
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and proves the recurrence. Eq. (44) can now be generalized to read: 
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4.c Exact plane wave solution 

In the case of a linearly polarized, monochromatic plane wave, where we have, 
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the summation in Eq. (45) can easily be performed analytically: 
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(47) 

Using this result in the equation governing the dynamics of the light-cone variable leads 

to a slightly more complicated differential equation: 
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which can also be solved analytically [6], to obtain 
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(49) 

Note that the general solution contains a runaway exponential, of the form e , which 

is eliminated by choosing the proper initial conditions for  and q ; in addition, 

0/ q� �

'q "

� � 00q � � � q . The second-harmonic oscillatory terms are driven by the ponderomotive 

force, while radiative recoil accumulates linearly with � . 

To determine the momentum transfer over a finite phase interval, , we simply 

average out the second harmonic motion: 

��
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Here, we have chosen  to model an electron initially at rest; we have 

also neglected the term in � ; finally, we clearly recognize that 

0 0 0 1zq u�� � �
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00

/ 2d A
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��

 

for a linearly polarized plane wave of constant amplitude over the phase interval . 

This result is completely analogous to the one derived for circular polarization, and 

presented in Eq. (28). 

The complete result is: 
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To exhibit the higher-order classical radiative corrections, we simply Taylor-expand 
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Beyond the lowest-order term, the corrections scale as even powers of � ; these 

results are in sharp contrast with the Compton scattering theory, which is presented 

next. 

0 0k r�

 

5 Compton scattering 

To assess the validity of the results derived above, we need to compare them with 

Compton scattering both in the small recoil limit, and for larger values of the momentum 

transfer. Energy-momentum conservation can be written as ; 

using the normalization of the 4-velocity and the photon mass-shell condition, one 

obtains the well-known relation between the initial and final photon states: 

0 0
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0 .Ck u k k u�
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�
 In the specific frame chosen here, � �0 1,0,0,0�

�u , and the 

electron momentum after scattering is simply given by: 
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where � �ˆ �n  is the propagation direction of the scattered photon. For direct 

comparisons with Eqs. (28) and (51), the momentum transfer needs to be averaged 

over the Compton scattering differential cross-section, which represents the probability 

of radiating a photon over a small solid angle: 
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5.a Small recoil limit 

In the small recoil limit, where , 0 1Ck� � � � � �0 ˆˆCk� � �� � �� �u z� �

2 2

n ; furthermore, in the 

rest frame of the electron, 0/ sin �d d r� � � , where �  is the angle between the 

direction of polarization and � �ˆ �n . Using symmetry arguments, it is easily seen that 

� � 2ˆ sin d�� ��n 0� , and 0 ˆCk zˆ zu� �� �u z � , as shown in Fig. 1. At this point, to 

obtain the total momentum transfer we need to evaluate the average number of 

scattering events between the electron and the incident photons in the plane wave. The 

electromagnetic energy density in vacuum is � �
2

0 0
3 2/ / 4d W dxdydz E / / 4m cA e� �� � � , 

and the photon density can be written as: 
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The average number of collisions is then: 
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and the average recoil is 
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3z zu N u r k A g d� �

��
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��

� � � �  (57) 

 

which is precisely the result obtained using the classical Dirac-Lorentz equation, shown 

in Eq. (28). 

Before examining the physical meaning of this result, we note that the frequency of the 

incident plane wave, � , represents an average for a short pulse; however, since the 

result holds independently of the pulse duration, one can consider arbitrarily long pulses 

with correspondingly narrow Fourier transform-limited bandwidths. 

0

As expected, the classical Dirac-Lorentz result does not involve Planck’s constant, while 

Compton scattering, for an individual event, clearly reflects the quantum nature of light. 

Once an average number of collisions are considered, however, Compton scattering 

yields the same momentum transfer as the classical derivation. This might seem 

paradoxical, but the averaging clearly yields a continuous momentum transfer value 

because, while each collision results into a quantized average recoil, the energy density 

of the incident plane wave itself is partitioned into discrete quanta, thus eliminating 

Planck’s constant from the final result. 

This further establishes the well-known fact that, for free electrons, the electrodynamical 

length scale is the classical electron radius, ; indeed, the Compton scattering cross-

section is essentially classical, and independent from the Compton wavelength, 

: � � . 

0r

0 /C r ���
2

08 /r� 3
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5.b Average recoil 

Equation (54) can be used to determine the average electron recoil for arbitrary values 

of :  using spherical coordinates, with 0 Ck � � �ˆ ˆ ˆ ˆcos sin sin sin cos� � � �� � � �y z �n x , we 

have 
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(58) 

where we have defined � . For small values of � , the recoil is given by 0 Ck� �
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where a quadratic correction term appears; the average momentum transfer is: 
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This last result is important, as it combines the classical and the quantum scales; the 

correction term is purely quantum mechanical. By contrast, the Dirac-Lorentz radiative 

scale is � , and the first correction beyond the lowest-order term is quadratic 

in � . 

0 0k r� ���

For arbitrary values of � , the recoil is: 0 Ck� �
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(61) 

Note that the classical scale, � ; therefore, perturbation theory still applies for 

values of � � , and we can compare the Dirac-Lorentz theory with 

Compton scattering, as shown in Fig. 2. Clearly, the classical electron theory breaks 

down beyond the lowest-order value of the momentum transfer, which scales as the 

classical electron radius; of course, this is not unexpected, as the quantum scale 

characterizing Compton scattering recoil correction is not present in the classical theory. 

Therefore, radiative corrections should in most cases be treated via QED, although this 

becomes difficult in the classical nonlinear regime, where the normalized potential 

. A more detailed inspection of Fig. 2 shows that for � , both theories agree, 

as recoil remains negligible; the Compton peak is located near � , where classical 

recoil is still very small (� � ); finally, a crossing point exists at � , 

beyond which the two theories predict completely different behaviors: while the 

0 0k r� �

95(61)
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2�
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Compton corrections become smaller, the Dirac-Lorentz solution trends toward larger 

effects before the perturbative approach breaks down. 

6 Conclusions 

In conclusion, we have presented a direct comparison between the Dirac-Lorentz 

dynamics of an electron subjected to a plane wave in vacuum and the well-known recoil 

associated with Compton scattering; in the small recoil limit, the classical Dirac-Lorentz 

is shown to yield the same momentum transfer as that derived from Compton scattering 

kinematics. While this further establishes the well-known fact that, for free electrons, the 

electrodynamical length scale is the classical electron radius, questions remain open 

about the transition between the classical regime, where Dirac-Lorentz electrodynamics 

applies, and the quantum electrodynamical regime, where QED concepts, including 

Delbrück scattering, pair creation, and the Schwinger critical field play a major role. 

When higher-order corrections are included, an exact analytical solution to the plane 

wave Dirac-Lorentz equation has been derived, and used to show that the classical 

electron theory breaks down beyond the lowest-order value of the momentum transfer, 

which scales as the classical electron radius; of course, this is not unexpected, as the 

quantum scale characterizing Compton scattering recoil correction is not present in the 

classical theory. Therefore, radiative corrections should in most cases be treated via 

QED, although this becomes difficult in the classical nonlinear regime, where the 

normalized potential . 0 1A �
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Figure Captions 

Fig. 1 Interaction between an electron initially at rest with an incident photon, 

propagating along the z-axis, with momentum � ; after the event, the probability 

distribution for the scattered photons is given by a dipole radiation pattern, which results 

in an average null momentum for the scattered radiation: the electron recoil is then 

equal to 

0 ˆk z

0 ˆm c k�

�u � 0z , on average. 

Fig. 2 Comparison between the average axial electron recoil from Compton scattering 

(red) and the Dirac-Lorentz momentum transfer (blue); the dashed line corresponds to a 

regime where the perturbation in �  is no longer valid. In both cases, the 

momentum transfer, , is normalized to 

0 0 1k r ��� � �

zu� � �2 d� �
��

�
A0 0

2
3

k r
��� . 
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Fig. 1 
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Fig. 2 
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