EFFECTS OF MATERIAL IMPROVEMENT ON CZT DETECTORS.

PDF Version Also Available for Download.

Description

CZT material quality improvement has been achieved by optimizing the crystal growth process. N-type conductivity has been measured on as-grown, undoped, Cd{sub 0.9}Zn{sub 0.1}Te. Cd{sub 0.85}Zn{sub 0.15}Te crystals have been grown. for producing high resistivity CZT radiation detectors. The best FWHM of {sup 57}Co 122KeV spectrum was measured to be 3.7% and ({mu}{tau}){sub e} was 3 x 10{sup -3} cm{sup 2}V{sup -1}. The microscopic gamma ray response using a beam size of 10 {micro}m has been used to map the entire 4 mm x 4 mm detector. Several black spots indicating no signal responses were observed while all other areas ... continued below

Physical Description

9 pages

Creation Information

CHU, M.; CARINI, G.A. & AL., ET August 13, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

CZT material quality improvement has been achieved by optimizing the crystal growth process. N-type conductivity has been measured on as-grown, undoped, Cd{sub 0.9}Zn{sub 0.1}Te. Cd{sub 0.85}Zn{sub 0.15}Te crystals have been grown. for producing high resistivity CZT radiation detectors. The best FWHM of {sup 57}Co 122KeV spectrum was measured to be 3.7% and ({mu}{tau}){sub e} was 3 x 10{sup -3} cm{sup 2}V{sup -1}. The microscopic gamma ray response using a beam size of 10 {micro}m has been used to map the entire 4 mm x 4 mm detector. Several black spots indicating no signal responses were observed while all other areas showed an average of 65-70% collection efficiency. The black spots suggest that at those locations, the Te precipitates are larger than 10 {micro}m. Detailed microscopic infrared transmission measurement on the sample found that most Te precipitates have sizes of 4-6 {micro}m. Theoretical analysis of the results suggests that singly and doubly ionized Te{sub Cd}V{sub Cd}{sup 2} might be the shallow and deep donors previously assigned to Te{sub Cd} by us.

Physical Description

9 pages

Source

  • SPIE, HARD X-RAY AND GAMMA-RAY DETECTOR PHYSICS VIII; SAN DIEGO, CA; 20060813 through 20060817

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: BNL--77018-2006-CP
  • Grant Number: DE-AC02-98CH10886
  • Office of Scientific & Technical Information Report Number: 893014
  • Archival Resource Key: ark:/67531/metadc883981

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 13, 2006

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 17, 2016, 7:51 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

CHU, M.; CARINI, G.A. & AL., ET. EFFECTS OF MATERIAL IMPROVEMENT ON CZT DETECTORS., article, August 13, 2006; [Upton, New York]. (digital.library.unt.edu/ark:/67531/metadc883981/: accessed September 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.