CSNS LINAC DESIGN

PDF Version Also Available for Download.

Description

China Spallation Neutron Source has been approved in principle by the Chinese government. CSNS can provide a beam power of 100kW on the target in the first phase, and then 200kW in the second phase. The accelerator complex of CSNS consists of an H- linac of 81MeV and a rapid cycling synchrotron of 1.6GeV at 25Hz repetition rate. In the second phase, the linac energy will be upgraded to 132MeV and the average current will be doubled. The linac has been designed, and some R&D studies have started under the support from Chinese Academy of Sciences. The linac comprises a ... continued below

Physical Description

5 pages

Creation Information

FU, S.; FANG, S. & WEI, J. August 21, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

China Spallation Neutron Source has been approved in principle by the Chinese government. CSNS can provide a beam power of 100kW on the target in the first phase, and then 200kW in the second phase. The accelerator complex of CSNS consists of an H- linac of 81MeV and a rapid cycling synchrotron of 1.6GeV at 25Hz repetition rate. In the second phase, the linac energy will be upgraded to 132MeV and the average current will be doubled. The linac has been designed, and some R&D studies have started under the support from Chinese Academy of Sciences. The linac comprises a H- ion source, an RFQ and a conventional DTL with EMQs. This paper will present our major design results and some progresses in the R&D of the linac.

Physical Description

5 pages

Source

  • 2006 LINEAR ACCELERATOR CONFERENCE (LINAC 06); KNOXVILLE, TN; 20060821 through 20060825

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: BNL--77068-2006-CP
  • Grant Number: DE-AC02-98CH10886
  • Office of Scientific & Technical Information Report Number: 896440
  • Archival Resource Key: ark:/67531/metadc883859

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 21, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Dec. 12, 2016, 8:10 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

FU, S.; FANG, S. & WEI, J. CSNS LINAC DESIGN, article, August 21, 2006; [Upton, New York]. (digital.library.unt.edu/ark:/67531/metadc883859/: accessed October 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.