Particle-type dependence of azimuthal anisotropy and nuclearmodification of particle production in Au+Au collisions at sNN = 200GeV

PDF Version Also Available for Download.

Description

We present STAR measurements of the azimuthal anisotropy parameter v{sub 2} and the binary-collision scaled centrality ratio R{sub CP} for kaons and lambdas ({Lambda} + {bar {Lambda}}) at mid-rapidity in Au+Au collisions at {radical}s{sub NN} = 200 GeV. In combination, the v{sub 2} and R{sub CP} particle-type dependencies contradict expectations from partonic energy loss followed by standard fragmentation in vacuum. We establish p{sub T} {approx} 5 GeV/c as the value where the centrality dependent baryon enhancement ends. The K{sub S}{sup 0} and {Lambda} + {bar {Lambda}} v{sub 2} values are consistent with expectations of constituent-quark-number scaling from models of hadron ... continued below

Creation Information

Adams, J.; Adler, C.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D. et al. June 18, 2003.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We present STAR measurements of the azimuthal anisotropy parameter v{sub 2} and the binary-collision scaled centrality ratio R{sub CP} for kaons and lambdas ({Lambda} + {bar {Lambda}}) at mid-rapidity in Au+Au collisions at {radical}s{sub NN} = 200 GeV. In combination, the v{sub 2} and R{sub CP} particle-type dependencies contradict expectations from partonic energy loss followed by standard fragmentation in vacuum. We establish p{sub T} {approx} 5 GeV/c as the value where the centrality dependent baryon enhancement ends. The K{sub S}{sup 0} and {Lambda} + {bar {Lambda}} v{sub 2} values are consistent with expectations of constituent-quark-number scaling from models of hadron formation by parton coalescence or recombination.

Source

  • Journal Name: Physical Review Letters; Journal Volume: 92; Related Information: Journal Publication Date: 02/23/2004

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--55274
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 891810
  • Archival Resource Key: ark:/67531/metadc883843

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 18, 2003

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Adams, J.; Adler, C.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D. et al. Particle-type dependence of azimuthal anisotropy and nuclearmodification of particle production in Au+Au collisions at sNN = 200GeV, article, June 18, 2003; United States. (digital.library.unt.edu/ark:/67531/metadc883843/: accessed October 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.