Project Progress

PDF Version Also Available for Download.

Description

The proposed study investigates the effect of low dose and low dose rate radiation exposure (X-rays) on induced genomic instability and the adaptive response, including the molecular mechanisms for these phenomena. The proposed studies will utilize human cell lines containing a stably integrated plasmid that can be caused by certain kinds of mutational insults to recombine to express the green fluorescent proteins, GFP. The study will use this cell line with the fluorescent plasmid recombination reporter system in a direct study of the effects of 1, 2.5, 5, 7.5, 10, 100 and 500 rads acute X-irradiation and the same doses ... continued below

Physical Description

72kb, 5 pages

Creation Information

William F. Morgan, Ph.D., D.Sc. September 11, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The proposed study investigates the effect of low dose and low dose rate radiation exposure (X-rays) on induced genomic instability and the adaptive response, including the molecular mechanisms for these phenomena. The proposed studies will utilize human cell lines containing a stably integrated plasmid that can be caused by certain kinds of mutational insults to recombine to express the green fluorescent proteins, GFP. The study will use this cell line with the fluorescent plasmid recombination reporter system in a direct study of the effects of 1, 2.5, 5, 7.5, 10, 100 and 500 rads acute X-irradiation and the same doses delivered by protraction at 1 rad or 0.01 rad per minute. This system will be used to provide a quantitative measure of the kinetics of genomic instability in colonies of cells exposed to low dose/dose rate, as well as to examine the adaptive response. The study will also apply micro array technology to investigate the molecular mechanisms underlying induced instability and adaptive effects.

Physical Description

72kb, 5 pages

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/ER/63230-1
  • Grant Number: FG02-01ER63230
  • DOI: 10.2172/891255 | External Link
  • Office of Scientific & Technical Information Report Number: 891255
  • Archival Resource Key: ark:/67531/metadc883799

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 11, 2006

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 7, 2016, 1:44 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

William F. Morgan, Ph.D., D.Sc. Project Progress, report, September 11, 2006; United States. (digital.library.unt.edu/ark:/67531/metadc883799/: accessed October 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.