Monitored Natural Attenuation of Chlorinated Solvents - Moving Beyond Reuctive Dechlorination

PDF Version Also Available for Download.

Description

Monitored natural attenuation (MNA), while a remedy of choice for many sites, can be challenging when the contaminants are chlorinated solvents. Even with many high quality technical guidance references available there continue to be challenges implementing MNA at some chlorinated solvent sites. The U.S. Department of Energy, as one organization facing such challenges, is leading a project that will incorporate developing concepts and tools into the existing toolbox for selecting and implementing MNA as a remediation option at sites with chlorinated solvents contamination. The structure and goals of this project were introduced in an article in the Winter 2004 issue ... continued below

Creation Information

Vangelas, K April 10, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Monitored natural attenuation (MNA), while a remedy of choice for many sites, can be challenging when the contaminants are chlorinated solvents. Even with many high quality technical guidance references available there continue to be challenges implementing MNA at some chlorinated solvent sites. The U.S. Department of Energy, as one organization facing such challenges, is leading a project that will incorporate developing concepts and tools into the existing toolbox for selecting and implementing MNA as a remediation option at sites with chlorinated solvents contamination. The structure and goals of this project were introduced in an article in the Winter 2004 issue of Remediation (Sink et al.). This article is a summary of the three technical areas being developed through the project: mass balance, enhanced attenuation, and characterization and monitoring supporting the first two areas. These topics will be documented in separate reports available from the US Department of Energy Office of Scientific and Technical Information at www.osti.gov.

Notes

available

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: WSRC-MS-2006-00201
  • Grant Number: DE-AC09-96SR1850
  • Office of Scientific & Technical Information Report Number: 890055
  • Archival Resource Key: ark:/67531/metadc883675

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 10, 2006

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 2, 2016, 3:43 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Vangelas, K. Monitored Natural Attenuation of Chlorinated Solvents - Moving Beyond Reuctive Dechlorination, article, April 10, 2006; [Aiken, South Carolina]. (digital.library.unt.edu/ark:/67531/metadc883675/: accessed September 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.