Structure/Function Analysis of DNA-glycosylases That Repair Oxidized Purines and Pyrimidines and the Influence of Surrounding DNA Sequence on Their Interactions

PDF Version Also Available for Download.

Description

The overall goal of this project was to elucidate the structure/function relationships between oxidized DNA bases and the DNA repair enzymes that recognize and remove them. The NMR solution structure of formamidopyrimidine DNA glycosylase (Fpg) that recognizes oxidized DNA purines was to be determined. Furthermore, the solution structures of DNA molecules containing specific lesions recognized by Fpg was to be determined in sequence contexts that either facilitate or hinder this recognition. These objectives were in keeping with the long-term goals of the Principal Investigator's laboratory, that is, to understand the basic mechanisms that underpin base excision repair processing of oxidative ... continued below

Physical Description

5 pages

Creation Information

Wallace, Susan S. August 22, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The overall goal of this project was to elucidate the structure/function relationships between oxidized DNA bases and the DNA repair enzymes that recognize and remove them. The NMR solution structure of formamidopyrimidine DNA glycosylase (Fpg) that recognizes oxidized DNA purines was to be determined. Furthermore, the solution structures of DNA molecules containing specific lesions recognized by Fpg was to be determined in sequence contexts that either facilitate or hinder this recognition. These objectives were in keeping with the long-term goals of the Principal Investigator's laboratory, that is, to understand the basic mechanisms that underpin base excision repair processing of oxidative DNA lesions and to elucidate the interactions of unrepaired lesions with DNA polymerases. The results of these two DNA transactions can ultimately determine the fate of the cell. These objectives were also in keeping with the goals of our collaborator, Dr. Michael Kennedy, who is studying the repair and recognition of damaged DNA. Overall the goals of this project were congruent with those of the Department of Energy's Health Effects and Life Sciences Research Program, especially to the Structural Biology, the Human Genome and the Health Effects Programs. The mission of the latter Program includes understanding the biological effects and consequences of DNA damages produced by toxic agents in the many DOE waste sites so that cleanup can be accomplished in a safe, effective and timely manner.

Physical Description

5 pages

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/ER/45723-1
  • Grant Number: FG02-98ER45723
  • DOI: 10.2172/900301 | External Link
  • Office of Scientific & Technical Information Report Number: 900301
  • Archival Resource Key: ark:/67531/metadc883658

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 22, 2005

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 7, 2016, 3:21 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Wallace, Susan S. Structure/Function Analysis of DNA-glycosylases That Repair Oxidized Purines and Pyrimidines and the Influence of Surrounding DNA Sequence on Their Interactions, report, August 22, 2005; United States. (digital.library.unt.edu/ark:/67531/metadc883658/: accessed October 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.