Design of a Standing-Wave Multi-Cavity Beam-Monitor for Simultaneous Beam Position and Emittance Measurements

PDF Version Also Available for Download.

Description

A high precision emittance measurement requires precise beam position at the measurement location. At present there is no existing technique, commercial or otherwise, for non-destructive pulse-to-pulse simultaneous beam position and emittance measurement. FARTECH, Inc. is currently developing a high precision cavity-based beam monitor for simultaneous beam position and emittance measurements pulse-to-pulse, without beam interception and without moving parts. The design and analysis of a multi-cavity standing wave structure for a pulse-to-pulse emittance measurement system in which the quadrupole and the dipole standing wave modes resonate at harmonics of the beam operating frequency is presented. Considering the Next Linear Collider beams, ... continued below

Physical Description

7 pages

Creation Information

Kim, J. S.; Miller, R. & Nantista, C. June 22, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A high precision emittance measurement requires precise beam position at the measurement location. At present there is no existing technique, commercial or otherwise, for non-destructive pulse-to-pulse simultaneous beam position and emittance measurement. FARTECH, Inc. is currently developing a high precision cavity-based beam monitor for simultaneous beam position and emittance measurements pulse-to-pulse, without beam interception and without moving parts. The design and analysis of a multi-cavity standing wave structure for a pulse-to-pulse emittance measurement system in which the quadrupole and the dipole standing wave modes resonate at harmonics of the beam operating frequency is presented. Considering the Next Linear Collider beams, an optimized 9-cavity standing wave system is designed for simultaneous high precision beam position and emittance measurements. It operates with the {pi}-quadrupole mode resonating at 16th harmonic of the NLC bunch frequency, and the 3 {pi}/4 dipole mode at 12th harmonic (8.568 GHz). The 9-cavity system design indicates that the two dipoles resonate almost at the same frequency 8.583 GHz and the quadrupole at 11.427 GHz according to the scattering parameter calculations. The design can be trivially scaled so that the dipole frequency is at 8.568 GHz, and the quadrupole frequency can then be tuned during fabrication to achieve the desired 11.424 GHz. The output powers from these modes are estimated for the NLC beams. An estimated rms-beam size resolution is sub micro-meters and beam positions in sub nano-meters.

Physical Description

7 pages

Source

  • Journal Name: AIP Conf.Proc.737:386-392,2004; Conference: Prepared for 11th Advanced Accelerator Concepts Workshop (AAC 2004), Stony Brook, New York, 21-26 Jun 2004

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-11298
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 890477
  • Archival Resource Key: ark:/67531/metadc883625

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 22, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Aug. 1, 2017, 1:37 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Kim, J. S.; Miller, R. & Nantista, C. Design of a Standing-Wave Multi-Cavity Beam-Monitor for Simultaneous Beam Position and Emittance Measurements, article, June 22, 2005; [Menlo Park, California]. (digital.library.unt.edu/ark:/67531/metadc883625/: accessed September 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.